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Abstract

In this paper, we present a novel and general method to

accelerate convolutional neural network (CNN) inference

by taking advantage of feature map sparsity. We experi-

mentally demonstrate that a highly quantized version of the

original network is sufficient in predicting the output spar-

sity accurately, and verify that leveraging such sparsity in

inference incurs negligible accuracy drop compared with

the original network. To accelerate inference, for each con-

volution layer, our approach first obtains a binary sparsity

mask of the output feature maps by running inference on

a quantized version of the original network layer and then

conducts a full-precision sparse convolution to find out the

precise values of the non-zero outputs. Compared with ex-

isting work, our approach avoids the overhead of training

additional auxiliary networks, while is still applicable to

general CNN networks without being limited to certain ap-

plication domains.

1. Introduction

Today’s breakthrough in artificial intelligence often

comes from deep neural networks (DNNs) with very large

multi-layer models. Inference on these bulky models of-

ten requires a huge amount of computational power and a

large amount of energy. Running these models in a low-

cost, energy-efficient and low-latency way is highly desir-

able and has attracted much attention in the research com-

munity.

Exploring sparsity in DNNs is a key technique to reduce

model-inference cost. Many DNNs, particularly convolu-
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Figure 1. Overall flow of our SeerNet inference for a convolu-

tion layer. The sparsity prediction is done layer by layer. The

weights of the original layer are denoted as W and the correspond-

ing weights of the quantized layer are denoted as Wq . The input

feature map F (or input image for the first CNN layer) is quantized

into Fq . Based on Wq and Fq , we execute the quantized low-bit

inference (Q-Conv and Q-ReLU, i.e., quantized convolution and

quantized ReLU activation) to generate the sparsity mask M. With

M, we execute the full-precision sparse inference (S-Conv, i.e.,

sparse convolution) over W and F to get the output feature map

F’, which is also the input of the next layer.

tional neural networks (CNNs), are highly sparse with many

values involved in the calculation being zero or close to

zero. By skipping the computation involving zero values,

the model-inference cost could be significantly reduced.

Sparsity can arise in several different places in neural net-

work inference. Weight sparsity in CNNs has been exten-

11216



sively explored in many previous studies [8, 32, 10, 12, 19].

Some researchers further explore speedup potential of in-

put sparsity, such as skipping zeros from ReLU activa-

tion [25, 21] or sparse inputs of 3D object classification [33]

and detection [34, 26].

Another type of sparsity that can be exploited is output

sparsity. If some output values are known to be zero, we

can avoid computing those outputs altogether. One line of

work predicts output feature-map sparsity through external

application specific knowledge [23, 14]. These approaches

can only work on specific tasks and are not generally appli-

cable to regular CNN networks. Another research direction

related to our work is that training a small collaborative net-

work to predict output sparsity [3, 4]. These works have

shown meaningful speedup on inference workloads, but

they require training of additional neural networks, which

is often a daunting task for non-experts.

In this paper, we propose SeerNet, a novel approach

to accurately predict output feature-map sparsity of CNN

layers. The key idea of SeerNet is first running a highly-

quantized (e.g., 4-bit or 1-bit) version of the original CNN

network to predict a binary sparsity mask of the output fea-

ture maps. We then use this binary sparse mask to guide the

full precision convolution, as shown in Figure 1. Since we

quantize the original network, our method does not require

re-training or integrating external knowledge.

We address two key challenges of the proposed ap-

proach. First, the quantized prediction must predict out-

put sparsity accurately while incurring little computation

overhead. Second, full precision sparse convolution must

be able to efficiently utilize this sparsity to speed up infer-

ence. To this end, we develop several techniques for effi-

cient offline network quantization and online quantized in-

ference and propose a fast sparse convolution implementa-

tion to take advantage of feature-map sparsity. We have ver-

ified our idea and evaluated our system using various pop-

ular CNN models over the CIFAR-10 [16] and ILSVRC-

2012 [24] datasets. Experimental results demonstrate that

our approach is able to predict the feature-map sparsity of

the models at an accuracy of 96.5% on average, leading to

a negligible drop of the model-inference accuracy of only

0.18% to 0.42%. We also demonstrate apparent wall-clock

speedup compared to previous work.

The main contributions of this paper are as follows.

• We propose a novel approach for accurate prediction

of CNN feature-map sparsity through low-bit quanti-

zation. We develop multiple techniques to ensure good

sparsity prediction accuracy and low prediction over-

head.

• We provide a system implementation to leverage

the predicted feature-map sparsity to accelerate CNN

model inference. We employ several optimization ap-

proaches to fully leverage the hardware capabilities for

practical speedup.

• We conduct comprehensive experiments to demon-

strate that our approach achieves speedup in inference

with a negligible drop of model accuracy.

The rest of the paper is organized as follows: Section 2

presents the related work. Section 3 explores the opportuni-

ties of feature-map sparsity for accelerating CNN model in-

ference. Section 4 proposes SeerNet to predict feature-map

sparsity accurately through low-bit quantization. Section 5

demonstrates CPU speedup by leveraging output feature-

map sparsity. Section 6 reports the experimental results and

Section 7 concludes this paper.

2. Related Work

Weight pruning. Weight sparsity has been extensively

explored in previous work. Since model weights will not

change after model training and are constant during infer-

ence, previous work proposes sparse matrix algorithms with

statistical weight sparsity masks [10, 12, 19, 32, 8, 35] that

achieve significant model compression rate and inference

speedup. With respect to different granularities of the prun-

ing methods, weight pruning can be applied through fine-

grained pruning, filter level pruning, and channel level prun-

ing. Our work focuses on feature-map sparsity and thus is

complementary to weight sparsity.

Input sparsity. Researchers have also proposed to take

advantage of sparsity in the activation maps [13, 25, 5, 21].

Rectified linear unit (ReLU) activation often contains more

than 50% zeros on average. Different from weight pruning,

input activation sparsity is dynamically generated during in-

ference. Both hardware-based and software-based convolu-

tion algorithms are proposed to exploit input sparsity. How-

ever, convolution with input sparsity is hard to be acceler-

ated and may even be slower than dense convolution, due to

non-contiguous memory access and worse parallelism. By

leveraging output sparsity, our method avoids a lot of com-

putation but keeps a regular memory access pattern, because

our inputs are all dense matrices.

Output sparsity. Several methods have been proposed

to predict sparsity in output feature maps. X. Dong et al.

proposed adding a small auxiliary network for each con-

volution layer to predict attention areas and skipping com-

putation of those unimportant activation spaces according

to the auxiliary network’s prediction [3]. In vehicle detec-

tion applications, SBNet [23] uses prior knowledge, either

from offline maps or online prediction neural networks, to

generate computation masks of sparse blocks to speed up

inference. M. Figurnov et al. studied how to skip an adap-

tive number of layers in CNN for unimportant regions in

object classification tasks [4]. X. Li et al. proposed to use

a pixel-wise mask for re-weighting the computation in the

11217



context of semantic segmentation [18]. These methods are

closely related to our work. Compared to them, our method

does not require additional model training or prior domain

knowledge. Thus, our method can support existing models

and applications with minimal efforts from developers. Our

method also achieves better prediction accuracy than exist-

ing methods. In [1, 28], the authors designed customized

accelerators for DNNs to make early decisions or predic-

tions of skipping unnecessary computation.

Quantization. Quantization is a widely-used technique

for model compression. V. Vanhoucke et al. demonstrated

8-bit quantization on speech recognition tasks with no qual-

ity degradation [31]. With comprehensive re-training strate-

gies, further works quantized the number of bits of convo-

lution kernels from 32 to 8 or even to 4 [39, 36]. Other

studies [38, 7, 17, 22] further compressed model size with

some weight-sharing techniques. XNOR net [22] quantized

AlexNet and VGG with 1-bit weights, but suffered from a

significant accuracy loss. Dorefa [37] generalized the quan-

tization method and demonstrated good results with low-bit

neural network training. To maintain the model accuracy,

retraining is often necessary. In summary, there is a funda-

mental trade-off between model accuracy and quantization

level. Popular practices generally use 16-bit or 8-bit quanti-

zation. In this work, we use quantization to predict feature-

map sparsity rather than to compress the full model. We

show that it is feasible to quantize models more aggressively

while still achieving an accurate prediction of feature-map

sparsity.

3. Feature-Map Sparsity in CNN

Feature maps in CNN models usually have high sparsity.

This is because a convolution layer is commonly followed

by a ReLU activation layer that turns all negative inputs into

zeros, making the output (i.e., feature maps) of the CNN

layer highly sparse. In addition, max-pooling layer only se-

lects a max value in a sub-region and drops other values

in the region. As shown in Figure 2, we have observed

that the average feature-map sparsity ratios (after ReLU) in

widely-used CNN models are between 40% and 80%. Look

more deeply, different layers may have different feature-

map sparsity ratios. Figure 3 shows the detailed breakdown

of the feature maps of layers in VGG16. For layers with ad-

ditional max-pooling (+MP), sparsity can reach more than

80%, yielding a potential of 5x or more speedup by skipping

unnecessary computation of zero outputs.

However, it is challenging to leverage feature-map spar-

sity because such sparsity heavily depends on CNN inputs

and thus cannot be pre-determined without executing the

model inference. Thus, we need a method to predict feature-

map sparsity. Previous work either trains a collaborative

small network [3] or uses external domain-specific knowl-

edge [23] to help predict output sparsity. Both approaches

 0
 10
 20
 30
 40
 50
 60
 70
 80

VGG16

VGG16BN

ResN
et18

ResN
et34

Inceptio
nV3

S
p
ar

se
 r

at
io

 (
%

)

Figure 2. Average sparsity ratios of feature maps after ReLU acti-

vation in popular models.
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Figure 3. Per-layer feature-map sparsity of VGG16.

are not fully satisfactory. Training a collaborative network

is often a formidable task for inexperienced developers,

with many additional hyper-parameters to tune, while ex-

ternal domain-specific knowledge is only available on very

limited tasks such as semantic segmentation. In Section 4,

we describe how our proposed approach can predict feature-

map sparsity accurately through low-bit quantization.

4. Predicting Feature-Map Sparsity through

Low-Bit Quantization

In SeerNet, we propose to use quantized convolution to

predict the feature-map sparsity of CNNs. For a given CNN

model, the quantized weights can be generated online or

offline. The online computation overhead is negligible be-

cause it has high parallelism and low computation complex-

ity. The computation complexity of quantization is only

1/(HW) of the full convolution, where H, W are dimensions

of the output feature map. Offline preparation is an option to

eliminate online quantization overhead but requires further

storage.

During online model inference, we introduce an extra

“sparsity prediction” step for each CNN layer. We first

use the quantized weights to perform quantized convolution

over the input data and generate a binary sparsity mask. Us-

ing the sparsity mask, we then use the original CNN weights

to conduct sparse convolution and obtain the output feature

map, which is also the input to the next layer. Sparsity pre-
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diction and followed sparse convolution are done in a layer-

by-layer manner. Figure 1 shows the overall flow of the

quantized feature-map sparsity prediction and sparse infer-

ence for a single CNN layer.

There are two critical requirements for our feature-map

sparsity prediction in SeerNet: 1) it must ensure the spar-

sity prediction accuracy and final model accuracy, and 2) the

prediction process must be fast and incur low computational

overhead. To meet these requirements, we develop three

techniques, namely efficient quantizer, dequantization-free

integer convolution, and quantized sparsity-mask predic-

tion. In the following subsections, we describe how each

technique works in detail.

4.1. Efficient Quantizer

Quantization is a popular method to accelerate neural

network inference and training. Different from classical

quantization, we do not use it for full inference but only use

it in a layer-by-layer manner to predict output feature-map

sparsity. Therefore, we can use much lower bits than those

used in quantization schemes for carrying out full models.

For the output of ReLU activation, the prediction needs to

find the signs of output feature maps and zero out those

negative ones. For max-pooling, this prediction needs to

find the position of the largest value in a sub-region with

no regard to the precise values. Lower quantization bits of-

ten mean lower computation overhead and faster inference

speed. Still, over quantization introduces too much predic-

tion errors and will degrade model accuracy. We determine

the optimal quantization level empirically. We show exper-

iments to find the lowest quantization level in Section 6.5.

Many quantization methods are proposed before. We use

a popular method similar to the quantization method used

in TensorFlow [15] due to its efficiency and high precision.

Figure 4 shows a toy example of 4-bit quantization to a 3x3

tensor. We first find the max absolute value of the tensor,

which is ‘1.2’ in this case. We then define a linear mapping

function to map the largest value ‘1.2’ to the maximum in-

teger representation, which is 24−1 − 1 = 7 in this case.

So, any number between −1.2 to 1.2 is linearly mapped to

−8 to+7 by the mapping function y = int( x−(−1.2)
1.2−(−1.2)×8).

1.2 -1 0.5

0.3 -0.2 -0.4

0.20.10.01

8 -6 3

2 -1 -3

110

Float matrix n-bit int matrix
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Figure 4. An example of n-bit quantization (e.g., n=4).

4.2. Dequantizationfree Integer Convolution

Here we introduce our quantized convolution operator

(Q-Conv). Unlike traditional methods, our quantized con-

volution does not need the de-quantization stage to recover

precision and thus needs fewer operations and runs faster.

Equation 1 denotes a classical convolution.

Y =

N∑

i

Wi

⊗
Xi (1)

where ⊗ denotes a convolution operation. We ignore

bias for the sake of simplicity. Given a quantizer f , a

quantized convolution computation is shown in equation 2,

where ⊕ denotes the integer convolution operations.

(2)

f(Y ) = f(

N∑

i

Wi

⊗
Xi)

=

N∑

i

f(Wi

⊗
Xi)

=

N∑

i

f−1
w×x

(fw(Wi)
⊕

fx(Xi))

Different from classical quantized convolution, our Q-

Conv is dequantization-free because we only care about

the signs for ReLU and the max-value position for max-

pooling. Thus, the computation formula is shown as in

equation 3.

(3)

sign(f(Y )) = sign(

N∑

i

f−1
w×x

(fw(Wi)
⊕

fx(Xi)))

= sign(

N∑

i

(fw(Wi)
⊕

fx(Xi)))

4.3. Quantized SparsityMask Prediction

In many popular CNN models, a convolution layer is of-

ten followed by a batch normalization layer or/and a ReLU

layer or/and a max-pooling layer. ReLU leads to zero el-

ements and max-pooling discards more unused elements.

Using a quantized network to predict the feature-map spar-

sity after ReLU+max-pooling, we can save more unneces-

sary computation compared to only predict the feature-map

sparsity after ReLU. Different models have different com-

binations of these layers, depending on how the models are

designed and tuned. Specifically for our sparsity-mask pre-

diction, we divide all combinations into two groups.

Convolution + Relu or/and max-pooling. As discussed

above, our Q-Conv outputs low-bit integer numbers. When

a ReLU layer follows a convolution, we apply a quantized

ReLU operation (Q-ReLU) on the output of Q-Conv. Q-

ReLU only cares about the signs of Q-Conv’s output fea-

ture maps and thereby generates a corresponding sparsity

mask with the same dimension. Similarly, Q-max-pooling

only cares about the position of max value in sub-region and

generates a corresponding mask, as is shown in Figure 5.
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Figure 5. An example of Q-Relu and Q-max-pooling.

Convolution + Batch norm + ReLU/max-pooling.

Batch normalization [11] can be applied to reducing fea-

ture maps internal co-variant shift and is frequently used in

CNN models. From the perspective of arithmetic compu-

tation, batch normalization layer has five kinds of param-

eters, which are scaling factor α , bias β , average mean

µ, average variance σ2, and a small constant included for

numerical stability ǫ, as is shown in equation 4.

B =
α× (Y − µ)√

σ2 + ε
+ β (4)

Directly applying quantized batch-normalization (Q-

BN) on the output of Q-Conv will result in the product of

quantized parameters of two successive layers. This will

amplify the precision loss included by quantization and pro-

duce extra error in sparsity prediction. As shown in equa-

tion 5, parameters of both convolution layer and bath nor-

malization layer need to be quantized, mainly the convolu-

tion weights W and batch normalization scaling factor α.

B =
α× (

∑
N

i
Wi

⊗
Xi+ bias− µ)√

σ2 + ε
+ β (5)

We remove the compound quantization errors by fusing

Q-Conv kernel and Q-BN kernel. Kernel fusion is a com-

mon practice for accelerating DNN models. Here we fuse

the quantization of convolution and batch normalization to

remove compound quantization errors from the cascading

layers. Equation 6 shows the deduction of our fused opera-

tor, where we fuse α and Wi as f(α×Wi). We refer to the

fused Q-Conv and Q-BN operator as Q-Conv-BN.

f(B) = f(

∑
N

i
αWi

⊗
Xi + α× (bias− µ)√
σ2 + ε

+ β)

=
f(
∑

N

i
αWi

⊗
Xi) + f(α× (bias− µ))

f(
√
σ2 + ε)

+ f(β)

=

∑
N

i
fw(αWi)

⊕
fx(Xi) + f(α× (bias− µ))

f(
√
σ2 + ε)

+ f(β)

(6)

With these techniques, including the efficient quantizer,

dequantize-free integer convolution, efficient Q-ReLu and

Q-max-pooling kernel, the Q-Conv-BN fusion technique,

our sparsity-mask prediction is both fast and accurate.

5. Accelerating CNN Model Inference

In this section, we present our efforts on turning feature-

map sparsity into speedup on CPU. Theoretically, given a

ReLu layer with 80% sparsity, the upper bound speedup is

5x by skipping 80% computation. For max-pooling lay-

ers, a 2x2 max-pooling can save three-quarters computa-

tion, which means theoretically a 4x speedup. However, in

practice, it is hard to achieve such speedup due to quantized

prediction cost and sparse computation overhead. While

this work mainly focuses on feature-map sparsity predic-

tion, we develop several techniques to accelerate our quan-

tized sparsity prediction and sparse convolution on com-

modity hardware.

AVX acceleration. Current commodity-off-the-shelf

CPUs do not have native low-bit arithmetic hardware sup-

port. Therefore, we take advantage of CPU’s vector pro-

cessing units, such as AVX, to perform quantized predic-

tion. AVX2, or advanced vector extension V2, is an arith-

metic hardware in Intel CPUs for vector operations of up to

256-bits. Since current Intel CPUs do not have native sup-

port for 4-bit data, we use 8-bit integers for arithmetic com-

putation even if we use a lower bit precision (such as 4bits)

for our prediction network. AVX can process 32 8-bit in-

teger operations per cycle in parallel. For efficient storage,

we use 4-bit format to cache our intermediate results.

Efficient sparsity-mask encoding format. A good

sparse encoding format directly increases sparse convolu-

tion’s computation efficiency. We propose an efficient en-

coding format, as shown in Figure 6. In this encoding for-

mat, we discard all the indices of zero outputs and thus the

S-CONV kernel only takes non-zero entries. In addition, we

directly encode matrix indexes so that S-Conv can retrieve

indices and input vectors with negligible overhead.

0 1 2 3 4 5 6 7 8

0 0 0 0 1 0 0 1 0

0 1 0 1 1 0 0 1 0

1 1 1 0 1 1 1 1 1

0 0 0

0 1 0

0 1 0

0 1 0

1 1 0

0 1 0

1 1 1

0 1 1

1 1 1

Vectorized

Encoding

4 7 1 3 4 7 0 1 2 ✄

0 2 6

Sparsity mask of output feature map

Column index

Row index

Figure 6. Efficient sparsity-mask encoding.
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Multi-level data reuse. Our dual-model inference in-

troduces duplicated storage for quantized parameters and

feature maps. In general, additional storage overhead leads

to wasteful memory access and therefore downgrades per-

formance. We utilize multi-level data reuse technique to

solve this issue. To increase data reuse, we fuse the exe-

cution of input quantization and Q-Conv, Q-BN, Q-ReLU,

and Q-max-pooling to fully reusing data in CPU registers.

Since Q-Conv is packed in AVX vector format, we use in-

register arithmetic left and right shift to transform the data

format between AVX and other kernel’s usage. We also fuse

S-Conv with S-BN/S-ReLU/S-max-pooling to reuse tempo-

rary data in register and CPU cache.

6. Evaluation

In this section, we conduct experiments on two bench-

mark datasets with various CNN models. Section 6.1 de-

scribes the datasets and models we use. Our evaluation

centers around two aspects: the model accuracy of SeerNet

(Section 6.2) and the inference speedup of SeerNet achieved

on CPU (Section 6.3). Section 6.4, Section 6.5 and Section

6.6 further discuss the quantized sparsity-mask prediction

accuracy of each layer, the accuracy sensitivity to quantiza-

tion bits used for prediction, and the effect of fusing CONV

and BN on preserving model accuracy, respectively.

6.1. Datasets and CNN Models

We use two datasets, CIFAR-10 [16] and ILSVRC-

2012 [24], to evaluate our proposed method. CIFAR-10

is a dataset for image classification with 60K photographs,

which are sized of 32x32 and classified into 10 categories.

ILSVRC-2012 is a dataset with 1.28 million images which

are classified into 1000 classes.

To evaluate the accuracy of SeerNet and the speedup of

convolution with ReLU and max-pooling, we use five rep-

resentative CNN models. These models include VGG16,

VGG16 BN, ResNet18, ResNet34 and Inception [27, 9, 29,

30]. We use pre-trained models on ILSVRC-2012 from Py-

torch torchvision model zoo and follow the original data

augmentation strategies. For CNN models on CIFAR-10,

we train the baseline models using Pytorch.

6.2. Overall Model Accuracy

We evaluate the overall model accuracy of SeerNet by

applying sparse convolution with quantized prediction for

all layers of the five CNN models without re-training on

the two datasets. The quantization bit is configured to 4-

bit. The compared baselines are pre-trained models with

original configurations.

ILSVRC-2012 Table 1 shows the top-1 and top-5 model

accuracy on the ILSVRC-2012 dataset. Overall, SeerNet

only has a very small accuracy drop with an average value

of 0.51% on top-1 and 0.28% on top-5, compared to the

Model
Baseline

(Top1/Top5)

SeerNet

(Top1/Top5)

Acc. Drop

(Top1/Top5)

VGG16 71.59/90.38 71.31/90.28 0.28/0.10

VGG16 BN 73.37/91.50 72.85/91.18 0.52/0.32

ResNet18 69.76/89.08 69.34/88.90 0.42/0.18

ResNet34 73.30/91.42 72.95/91.25 0.35/0.17

InceptionV3 77.35/93.62 76.39/92.97 0.96/0.65

Table 1. Top-1 and Top-5 accuracy (%) of SeerNet with 4-bit quan-

tized prediction on ILSVRC-2012.

Model Baseline SeerNet Acc. Drop

VGG16 92.57 92.48 0.09

VGG16 BN 93.89 93.60 0.29

ResNet18 93.91 93.88 0.02

ResNet34 94.80 94.76 0.04

InceptionV1 95.12 93.82 1.30

Table 2. Top-1 accuracy (%) of SeerNet with 4-bit quantized pre-

diction on CIFAR-10.

baseline among all the five models. SeerNet achieves the

minimal accuracy drop on VGG16 of 0.28% and 0.1% for

top-1 and top-5, respectively. Although the accuracy drop

becomes higher for more complex models, SeerNet also

achieves a reasonable result on the InceptionV3 model, i.e.,

a drop of 0.96% on top-1 and 0.65% on top-5, respectively.

Thanks to our Q-Conv-BN fusion technique, batch normal-

ization only has a little effect on model accuracy with a fur-

ther accuracy drop of 0.24% on top-1 and 0.22% on top-5,

respectively, in comparing VGG16 with VGG16 BN. We

will further evaluate the effect of batch normalization in

Section 6.6.

CIFAR-10 Table 2 shows the overall top-1 model accu-

racy on the CIFAR-10 dataset. SeerNet achieves an aver-

age 0.35% accuracy drop among the five models, where the

minimal one is only 0.02% on ResNet18 and the maximal

one is 1.30% on InceptionV1, respectively. Similar to the

results on the ILSVRC-2012 dataset, batch normalization

affects little on the quantized prediction. The further accu-

racy drop is 0.2% when comparing the VGG16 model with

batch normalization enabled and disabled.

The evaluation results on both ILSVRC-2012 and

CIFAR-10 datasets demonstrate the high accuracy perfor-

mance of SeerNet. According to Section 4, SeerNet runs

sparse convolution based on the quantized sparsity-mask

prediction, so the overall model accuracy is only affected

by the quantized prediction in SeerNet. We further evalu-

ate the quantized prediction with two micro-benchmarks in

Section 6.4 and 6.5.

6.3. Inference Speedup

To demonstrate the achievable speedup with our sparse

convolution algorithm, we implement quantized prediction
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Figure 7. Inference time and speedup. The total computation time of the SeerNet is summed up by the computation time spent on sparse

convolution and quantized prediction. So the bars are the smaller the better. The speedup is reciprocal to computation time.

and sparse convolution kernel by writing C++ code. Ac-

cording to Section 3, layers with higher sparsity usually

mean more room for speedup. Due to computation over-

head introduced by quantized prediction, layers with small

sparsity may not have any speedup. Thus, we only apply

sparse convolution on the layers whose sparsity is larger

than 60%. For the rest of layers, we use original dense con-

volution. We test our performance on real image data from

ILSVRC2012 dataset.

To have a fair comparison with previous work, we

use ResNet18, ResNet34 and VGG16 tested on ILSVRC-

2012 dataset. We compare with the following methods.

LCCL [3] and PFEC [17] focus on leveraging convolution

sparsity for inference speedup. LCCL re-trains a small col-

laborative network to predict output sparsity. PFEC prunes

convolution filters. BWN and XNOR [22] accelerate infer-

ence by model quantization. BWN uses binarized convolu-

tion weights. XNOR re-trains a network with both binarized

convolution input and binarized weights. All above meth-

ods demonstrate speedup on CPU. We use single thread

OpenBLAS library running on an Intel Xeon CPU E5-2630

v3 (2.40GHz) for comparison with them.

Table 3 shows the wall-clock speedup running on the In-

tel CPU. We use the performance numbers of LCCL, PFEC,

BWN, and XNOR reported in their papers. We achieve

an apparent speedup with negligible accuracy loss. Com-

pared with LCCL that is mostly related to our work, our

method achieves a smaller accuracy drop (0.42%/0.18% vs.

3.65%/2.30% in ResNet18) and a higher speedup (30.0%

vs. 20.5% in ResNet18), without requiring any model re-

training effort.

Figure 7 shows detailed layer-wise computation time as

well as the corresponding speedup of our sparse convolu-

tion implementation compared to OpenBLAS based dense

convolution. In this figure, dense convolution’s computa-

tion time is normalized to 1. The total computation time

is summed up by computation time spent on quantized pre-

diction and sparse convolution respectively, as is shown as

light blue bars and dark blue bars in this figure. From this

figure, we can see more than half of the layers in ResNet18

and ResNet34 can achieve 1.2x to 3.4x speedup. VGG16’s

Top-1 Top-5

Model Method Acc. Acc. Speedup Re-train?

Drop(%) Drop(%)

SeerNet 0.42 0.18 30.0% No

ResNet LCCL[3] 3.65 2.30 20.5% Yes

18 BWN[22] 8.50 6.20 50.0% Yes

XNOR[22] 18.10 16.00 98.3% Yes

ResNet SeerNet 0.35 0.17 22.2% No

34 LCCL[3] 0.43 0.17 18.1% Yes

PFEC[17] 1.06 - 24.2% Yes

VGG SeerNet 0.28 0.10 40.1% No

16 PFEC[17] - 0.15 34.0% Yes

Table 3. Comparison with previous acceleration work.

convolution layer #3, #6, #9 and #12 are followed by 2x2

max-pooling besides ReLU. Since 2x2 max-pooling select

one from four neighbor pixels, it adds more sparsity to out-

put feature maps. So it achieves much higher speedup (up

to 5.79x) than those with only ReLU followed.

Discussion. The predicted output sparsity shows a high

theoretical speedup. We use a CPU implementation to

demonstrate the efficiency of our idea. Sparse DNN accel-

eration with specialized accelerators and mixed-precision

hardware platform are active research topics which can fur-

ther speed up our scenario. Nvidia’s latest generation Tur-

ing GPU integrates 4-bit/8-bit/16-bit mixed precision tensor

cores [20], which can further decrease quantized prediction

overhead in SeerNet. Our sparse convolution can also be ac-

celerated by leveraging GPU’s massive parallel processing

units with corresponding optimization techniques. Special-

ized accelerators on FPGA or ASIC show great potential in

bringing a much higher speedup and power efficiency for

sparse DNNs [6, 2, 21, 1, 28]. Furthermore, they can pro-

vide circuit level bit-manipulation which is suitable to con-

duct low-bit quantized prediction.

6.4. Quantized Prediction Accuracy

Achieving sufficiently low error rate for feature-map

sparsity prediction is important to maintain overall model

accuracy. For each input picture’s inference, we make a

layer-by-layer comparison between quantized and original

convolution’s output feature maps. Then we count the num-

ber of correct predictions by differentiating each pixel’s sign
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ReLU Layer# 1 2 3 4 5 6 7 8 9 10 11 12 13

Prediction

Error Rate
4.3% 9.5% 7.0% 4.8% 4.9% 4.1% 2.1% 2.4% 2.2% 1.0% 2.0% 1.7% 0.7%

Table 4. Feature-map sparsity prediction error rate of VGG16 on ILSVRC-2012 dataset, layer by layer.

of quantized convolution’s output feature map with that of

the original convolution’s output. The quantization bit is set

to 4-bit.

Due to the space limitation, Table 4 only shows the quan-

tized prediction error rate of each layer of the VGG16 model

on the ILSVRC-2012 dataset. SeerNet can achieve an av-

erage error rate of 3.58% on all the layers of the VGG16

model. In detail, the maximal error rate is 9.5% on the 2nd

layer and the minimal one is 0.7% on the last layer, respec-

tively.

6.5. Sensitivity Study of Quantization Bits
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Figure 8. Top-1 accuracy of VGG16, ResNet34 and InceptionV3

with different quantization bits on ILSVRC-2012.

Recall that the only module in SeerNet that affects model

accuracy is the quantized prediction. In order to study

how the quantization bit affects quantization prediction, i.e.,

the sensitivity, we experiment on different quantization bits

from 32-bit to 2-bit for both input feature maps and con-

volution weights. In this experiment, we evaluate the top-1

accuracy of the VGG16, ResNet34 and InceptionV3 models

running on the ILSVRC-2012 dataset.

Figure 8 reports the results. It is clear that all the three

models can achieve a good top-1 accuracy when the quan-

tization bit is more than 4 and the model accuracy drops

drastically when we use 3-bit quantization or lower. This

is because higher quantization bits can keep more informa-

tion to make the quantized prediction more precise. Specifi-

cally, the accuracy of the VGG16 and the InceptionV3 mod-

els will drop close to 0 for 2-bit quantization. To sum up,

quantizing too many bits in the quantized prediction will

hurt overall model accuracy and 4-bit quantization is a rea-

sonable configuration that can keep enough information for

quantized prediction.

6.6. Effect of Fusing Conv and BN

As introduced in Section 4.3, we fuse the CONV layer

and its subsequent BN layer in order to eliminate the im-

pact of quantizing two layers continuously on sparsity pre-

diction accuracy. In this section, we conduct an experiment

on ILSVRC-2012 with VGG16 BN to demonstrate fusing

CONV and BN (Fused Conv BN) can increase the overall

model accuracy of SeerNet.

Bits
Quant.

Fused Conv BN

separately Quant.

Conv and BN
Acc. Diff.

16-bit 73.36/91.50 73.36/91.50 0.00/0.00

8-bit 73.36/91.50 73.36/91.49 0.00/0.01

4-bit 72.85/91.18 66.70/87.29 6.15/3.89

2-bit 8.68/20.36 0.06/0.59 8.62/19.77

Table 5. SeerNet accuracy (%) comparison between quantizing

Fused Conv BN and quantizing Conv and BN separately using

VGG16 BN on ILSVRC-2012.

Table 5 shows a direct comparison between quantizing

Fused Conv BN and quantizing Conv and BN separately.

With 16-bit and 8-bit quantization prediction in SeerNet,

quantizing Fused Conv BN and quantizing Conv and BN

separately can both preserve the model accuracy. However,

with 4-bit quantization, quantizing Fused Conv BN has a

small impact on model accuracy while quantizing Conv

and BN separately decreases model accuracy significantly.

Therefore, quantizing Fused Conv BN has a lower impact

on model accuracy than quantizing Conv and BN separately.

This is because quantizing twice accumulates the informa-

tion loss and increases the sensitivity of model accuracy to

quantization bits.

7. Conclusion and Future Work

In this work, we propose SeerNet that accelerates CNN

inference by taking advantage of output feature-map spar-

sity. We propose a novel output sparsity-mask prediction

scheme by using highly quantized convolution. We develop

multiple techniques to ensure high prediction accuracy as

well as extremely low computational overheads. Verified

on five popular CNN models and two datasets, we demon-

strate an end-to-end speedup on CPU with negligible loss of

model accuracy. In the future, we plan to extend this work to

hardware platforms that have better mixed precision arith-

metic support and massive parallel processing units, like

FPGAs and GPUs. Doing so may further reduce the pre-

diction overhead and provide more promising speedup.
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