
Efficient and Effective Sparse LSTM on FPGA with
Bank-Balanced Sparsity

Shijie Cao∗
Harbin Institute of Technology

caoshijie0501@gmail.com

Chen Zhang
Microsoft Research
zhac@microsoft.com

Zhuliang Yao∗
Tsinghua University

v-zhuyao@microsoft.com

Wencong Xiao∗
Beihang University

v-wencxi@microsoft.com

Lanshun Nie
Harbin Institute of Technology

nls@hit.edu.cn

Dechen Zhan
Harbin Institute of Technology

dechen@hit.edu.cn

Yunxin Liu
Microsoft Research

yunxin.liu@microsoft.com

Ming Wu
Microsoft Research
miw@microsoft.com

Lintao Zhang
Microsoft Research

lintaoz@microsoft.com

ABSTRACT
Neural networks based on Long Short-Term Memory (LSTM) are
widely deployed in latency-sensitive language and speech appli-
cations. To speed up LSTM inference, previous research proposes
weight pruning techniques to reduce computational cost. Unfortu-
nately, irregular computation and memory accesses in unrestricted
sparse LSTM limit the realizable parallelism, especially when imple-
mented on FPGA. To address this issue, some researchers propose
block-based sparsity patterns to increase the regularity of sparse
weight matrices, but these approaches suffer from deteriorated
prediction accuracy.

This work presents Bank-Balanced Sparsity (BBS), a novel spar-
sity pattern that can maintain model accuracy at a high sparsity
level while still enable an efficient FPGA implementation. BBS
partitions each weight matrix row into banks for parallel comput-
ing, while adopts fine-grained pruning inside each bank to main-
tain model accuracy. We develop a 3-step software-hardware co-
optimization approach to apply BBS in real FPGA hardware. First,
we propose a bank-balanced pruning method to induce the BBS pat-
tern on weight matrices. Then we introduce a decoding-free sparse
matrix format, Compressed Sparse Banks (CSB), that transparently
exposes inter-bank parallelism in BBS to hardware. Finally, we de-
sign an FPGA accelerator that takes advantage of BBS to eliminate
irregular computation and memory accesses. Implemented on Intel
Arria-10 FPGA, the BBS accelerator can achieve 750.9 GOPs on
sparse LSTM networks with a batch size of 1. Compared to state-
of-the-art FPGA accelerators for LSTM with different compression
techniques, the BBS accelerator achieves 2.3 ~3.7x improvement on

∗Contribution during internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA ’19, February 24–26, 2019, Seaside, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6137-8/19/02. . . $15.00
https://doi.org/10.1145/3289602.3293898

energy efficiency and 7.0 ~34.4x reduction on latencywith negligible
loss of model accuracy.

KEYWORDS
FPGA; Deep Neural Networks; LSTM; Weight Pruning; Inference;
Bank-Balanced Sparsity
ACM Reference Format:
Shijie Cao, Chen Zhang, Zhuliang Yao, Wencong Xiao, Lanshun Nie, Dechen
Zhan, Yunxin Liu, Ming Wu, and Lintao Zhang. 2019. Efficient and Ef-
fective Sparse LSTM on FPGA with Bank-Balanced Sparsity. In The 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA ’19), February 24–26, 2019, Seaside, CA, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3289602.3293898

1 INTRODUCTION
Neural networks based on Long Short-Term Memory (LSTM) have
been widely used in interactive and latency-sensitive applications
such as machine translation, speech recognition and speech syn-
thesis [13, 20, 24]. The size and computational cost of these LSTM
models continue to grow in order to achieve better model accuracy.
However, the stringent requirement on computational resources
makes it challenging to achieve low inference latency for large
networks. The most time-consuming part of LSTM inference is
matrix-vector multiplication (MxV). As the size of the LSTM network
grows, MxV cost grows quadratically, thus significantly increasing
the inference cost.

Weight pruning is a model compression technique to reduce
overall memory and computational costs. Early works [8, 10] dis-
cover that removing LSTM weights below a small threshold has
negligible impact on model accuracy. By clamping a significant por-
tion of the weights to 0, weight pruning approach converts dense
weight matrices to unstructured sparse matrices, thus reducing the
computation and memory required to carry out inference.

After pruning, themost significant part of LSTM inference changes
from dense MxV to sparse matrix-vector multiplication (SpMxV).
Though requiring less computation, the irregularity of SpMxV lim-
its the maximum performance and energy efficiency achievable
on hardware accelerators [17, 19, 27]. Unstructured sparse matri-
ces cannot efficiently utilize underlying hardware resources due
to three reasons: 1) the unbalanced non-zero weights distribution

https://doi.org/10.1145/3289602.3293898
https://doi.org/10.1145/3289602.3293898

might cause workload skew among processing elements (PEs); 2)
concurrent irregular memory accesses to a dense vector lead to
memory access conflicts, which could stall the parallel execution;
and 3) sparse matrix representations such as compressed sparse row
(CSR) use indexes to track non-zero values, which require decoding
before computation.

To address these issues, further works [17, 19] suggest using
coarser-grained weight pruning methods to induce more structured
sparsity patterns for better hardware acceleration. Coarse-grained
pruning methods prune weights in the granularity of blocks. From
the hardware perspective, blocks of non-zero weights can enable
contiguous memory accesses and better utilize parallel computa-
tion resources. Unfortunately, it becomes challenging to maintain
the same model accuracy when block sparsity is applied. Block
sparsity constrains the locality of the non-zero weights, and im-
portant weights could be mistakenly pruned, resulting in model
accuracy loss. Furthermore, the block size (i.e., pruning granularity)
is application-sensitive, making it another hyper-parameter to tune.
Existing work often needs to search a range of block sizes to find a
trade-off between model accuracy and hardware efficiency [13, 17].

This work presents Bank-Balanced Sparsity (BBS), a novel spar-
sity pattern for pruning LSTM. Bank-balanced pruning splits each
weight matrix row into multiple equal-sized banks, and adopts fine-
grained pruning to each bank independently to obtain identical
sparsity among banks. BBS preserves the unstructured distribution
of non-zero weights inside each bank, thus maintaining higher
model accuracy than that of block sparsity. Experimental results in
Section 6 demonstrate that BBS achieves almost the same model
accuracy as unstructured sparsity and significantly outperforms
block sparsity when pruning weights at the same sparsity level.

Importantly, BBS is also amenable to FPGA acceleration because
it inherently provides a balanced matrix partitioning for parallel
computing. We design an FPGA accelerator to take advantage of the
benefits of BBS to eliminate the computational overheads existed
in unstructured sparsity. Specifically: 1) our accelerator utilizes the
intrinsic bank-balanced property in BBS to achieve high parallelism
in SpMxV with guaranteed load balance; 2) our accelerator supports
concurrent random access requests to vector elements without con-
flicts in SpMxV by adopting banked scratchpad memory to buffer
vectors; 3) to avoid decoding overheads of sparse matrix formats,
we introduce a novel format for BBS matrices that is decoding-free
in our FPGA accelerator. Notably, the BBS accelerator is highly
efficient even for inference with a batch size of 1, by exploiting
fine-grained parallelism from a single sample which is challenging
for unstructured sparsity.

Overall, this paper makes the following contributions:

(1) We propose Bank-Balanced Sparsity, a novel sparsity pat-
tern that can both maintain model accuracy and enable an
efficient FPGA accelerator implementation.

(2) We design an FPGA-based accelerator for BBS that eliminates
load-imbalance, irregular memory accesses and decoding
overheads, and achieves good efficiency for LSTM inference
even at a batch size of 1.

(3) Implemented on Intel Arria-10 FPGA, the BBS accelerator
achieves 750.9 GOPs on large LSTMs without batching. Com-
pared to state-of-the-art LSTMFPGA accelerators, we achieve

2.3 ~3.7x improvement on energy efficiency and 7.0 ~34.4x
reduction on latency with negligible loss of model accuracy.

2 BACKGROUND
2.1 Long Short-Term Memory.
LSTM is one of the most successful cells used in Recurrent Neural
Networks (RNNs) [11]. An LSTM network computes a mapping
from an input sequence X = (x1, ...,xT) to an output sequence
Y = (y1, ...,yT) by using the following equations iteratively from t
= 1 to T :

it = σ (Wixxt +Wiryt−1 +Wicct−1 + bi) (1)
ft = σ (Wf xxt +Wf ryt−1 +Wf cct−1 + bf) (2)
дt = σ (Wcxxt +Wcryt−1 + bc) (3)
ct = ft ⊙ ct−1 + дt ⊙ it (4)
ot = σ (Woxxt +Woryt−1 +Wocct−1 + bo) (5)
mt = ot ⊙ h(ct) (6)
yt =Wymmt (7)

where theW terms denote weight matrices, the b terms denote bias
vectors. The symbols i , f , o and c are respectively the input gate,
forget gate, output gate and cell activation (long-term memory).
The ⊙ operator denotes element-wise multiplication, and the +
operator denotes element-wise addition. σ is the logistic activation
function and h is the hyperbolic tangent (Tanh) activation function.

Among all operators in LSTM,matrix-vectormultiplication (MxV)
is the most memory-intensive and computation-intensive operator.
The dimensions of xt , yt and ct are often the same, say D. There-
fore, the number of weights is 12×D2. In each step of the inference
calculation, the number of operations in MxV is 24 × D2, and the
number of operations in element-wise operators (EWOP) is 9 × D.
As a consequence, accelerating MxV is the key to low latency LSTM
inference.

2.2 Weight Pruning
It is widely observed that Deep Neural Networks (DNNs) have
a lot of redundancy in weights. Pruning away (forcing to zero)
a proper number of unimportant weights won’t affect model ac-
curacy. Moreover, weight pruning can reduce the model size and
computational complexity for energy efficient hardware accelera-
tion. Deep Compression [9, 10] provides a threshold-based weight
pruning technique. This method prunes away small weights whose
absolute values are less than a predefined threshold and retrains the
remaining weights. Pruning and retraining are iteratively applied
to generate the sparse DNN model.

As mentioned in the introduction, unrestricted pruning of weight
matrices is unfriendly to hardware acceleration. Further work [17,
19] proposes coarse-grained pruning methods to prune blocks of
weights. They pick the maximum magnitude or the average mag-
nitude of the weights within a block as the representative of the
entire block. If the representative magnitude is less than a pre-
defined threshold, the entire block will be pruned. However, the
pruning granularity affects hardware efficiency as well as model
accuracy. Deep neural network designers struggle to balance model
accuracy and hardware efficiency.

3 BANK-BALANCED SPARSITY
Our proposed sparsity pattern, Bank-Balanced Sparsity (BBS), achieves
both high model accuracy and high hardware efficiency. In this sec-
tion, we first describe the pattern of BBS and the motivation for
designing it. Then, we present the detailed bank-balanced pruning
algorithm to induce BBS on LSTM weight matrices. Finally, we
analyze the pruning effectiveness of BBS in terms of achievable
accuracy and sparsity. The efficient hardware acceleration design
for BBS will be introduced in the next section.

3.1 Bank-Balanced Sparsity Pattern
For matrices represented in BBS, each matrix row is split into mul-
tiple equal-sized banks (i.e., sub-rows), and each bank has the same
number of non-zero values. Figure 1 illustrates BBSwith an example
and compares it with unstructured sparsity and block sparsity. In
this example, three sparse matrices with different sparsity patterns
are all pruned from the dense example weight matrix in Figure 1(a))
with a sparsity ratio of 50%. Fine-grained pruning globally sorts
the weights and prunes the smallest 50% of weights, leading to an
unstructured sparse matrix (Figure 1(b)); Coarse-grained pruning
induces a block sparse matrix (Figure 1(c)) by setting the block
size to 2x2 and the block representative with the block average;
Our bank-balanced pruning induces a bank-balanced sparse matrix
(Figure 1(d)) by splitting each matrix row into 2 equal-sized banks
and applying fine-grained pruning inside each bank independently.

0.2 0.1 0.2 -0.6 0.1 0.4 -0.1 0.6

0.4 -0.3 0.4 0.1 0.2 -0.4 0.1 0.5

0.7 -0.1 -0.3 0.1 0.5 -0.1 0.5 0.1

-0.1 0.6 -0.5 0.3 -0.4 -0.2 0.3 0.6

0.2 -0.6 -0.1 0.6

0.4 0.1 0.1 0.5

0.7 -0.1 0.5 0.1

-0.1 0.6 0.3 0.6

0.2 -0.6 0.4 0.6

0.4 0.4 -0.4 0.5

0.7 -0.3 0.5 0.5

0.6 -0.5 -0.4 0.6

-0.6 0.4 0.6

0.4 0.4 -0.4 0.5

0.7 0.5 0.5

0.6 -0.5 0.3 -0.4 0.3 0.6

(a) Original Dense matrix (b) Unstructured sparse matrix

by global pruning

(c) Block sparse matrix by pruning 2x2

blocks according to block average.
(d) Bank-balanced sparse matrix by

local pruning inside each 1x4 bank

Figure 1: Comparing BBS with unstructured sparsity and
block sparsity by pruning a dense matrix with a sparsity ra-
tio of 50%.

We design this BBS sparsity pattern with consideration of both
hardware efficiency and model accuracy. In general, partitioning
weight matrix into multiple sub-matrices is mandatory for parallel
computing. In BBS, each matrix row is split into multiple banks
with the same size and same sparsity. This bank-balanced partition-
ing enables an efficient SpMxV design to exploit both inter-row
parallelism and intra-row parallelism (i.e., inter-bank parallelism)
with guaranteed load balance and no vector access conflicts. The
detailed SpMxV design for BBS will be described in Section 4.1. In
addition, since BBS applies fine-grained pruning within each bank
independently, the relatively large weights which contribute more
to model accuracy in each bank can be preserved.

Another potential design for a sparsity pattern would be to split
weight matrices into 2-D blocks like block sparsity and apply fine-
grained pruning within each 2-D block. Larger weights within each
block can be preserved as well in this scheme. However, after prun-
ing, each 2-D block is still an unstructured sparse matrix. It is still
challenging to design an efficient hardware accelerator architec-
ture due to the irregularity of sparse sub-matrices. For example,
parallelizing SpMxV across 2-D blocks leads to concurrent irregular
vector accesses.

3.2 Bank-Balanced Pruning Algorithm
To induce BBS on LSTMweight matrices, we adopt a bank-balanced
pruning method that prunes each bank independently with the
same threshold percentage to obtain the same sparsity ratio among
banks.

Algorithm 1 Bank-Balanced Pruning Algorithm
Input:

The matrix to be pruned,M ;
The number of banks per row, BankNum;
The expected sparsity, Sparsity;

Output:
The pruned matrix,Mp ;

1: for eachMi ∈ M .rows do
2: Divide the rowMi into BankNum blocks;
3: for each bank ∈ Mi do
4: Sort the elements in bank ;
5: Calculate the bank internal threshold T in line with

Sparsity;
6: for each element ∈ bank do
7: prune element if element < T ;
8: end for
9: end for
10: end for
11: return the pruned matrix,Mp ;

Like previous pruning methods, we apply the bank-balanced
pruning method iteratively to a pre-trained network, and fine-tune
the network after each pruning iteration to restore the model accu-
racy. Algorithm 1 illustrates the detailed bank-balanced pruning
method to induce BBS on LSTM weight matrices. In each pruning
iteration, bank-balanced pruning first partitions each matrix row to
multiple equal-sized banks and sorts the weights within each bank
by their absolute values. The importance of weights is represented
as their bank internal ranking of absolute values. Iteratively, a per-
centage of weights with the smallest absolute values are pruned.
We slowly increase the pruning percentage from 0% to the target
sparsity, while the rate of increase decreases with each pruning
iteration. During pruning, if the model accuracy drops significantly
and cannot be recovered via fine-tuning, we withdraw this pruning
iteration and stop the pruning procedure.

3.3 Analysis of Our Pruning Method
Intuitively, a pruning method should remove only smaller weights
and preserve larger weights that contribute more to model accu-
racy. Fine-grained pruning clamps weights of small magnitudes to

(a) Unstructured Sparsity (b) BBS (c) Block Sparsity

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 2: Weight map visualization after pruning with (a) unstructured sparsity, (b) BBS, and (c) block sparsity (sparsity ratio
= 90%). These weight maps are 64 × 64 sub-matrices of the whole 1500 × 1500 matrix.

zero and preserves large weights to maintain model accuracy. For
bank-balanced pruning, we adopt fine-grained pruning inside banks
independently, so large weights inside each bank can be preserved.
In contrast, coarse-grained pruning prunes blocks of weights, which
constrains the locality of preserved non-zero weights, and therefore
some important weights could be mistakenly pruned while some
unimportant weights are instead preserved. For the example in
Figure 1, the bank-balanced sparse matrix in (d) preserves similar
larger weights as the unstructured sparse matrix in (b), but the
block sparse matrix in (c) removes some large weights (e.g., 0.4 and
0.5) but preserves some small weights (e.g. 0.1 and -0.1).

Table 1: Percentages of the largest weights that are pre-
served in various sparsity patterns (sparsity ratio = 90%).

Weight
Matrices

Unstructured
Sparsity BBS Block

Sparsity
Wix 100.00% 91.30% 42.76%
Wf x 100.00% 81.39% 24.26%
Wcx 100.00% 84.45% 24.24%
Wox 100.00% 85.62% 22.97%

To verify the pruning effectiveness of BBS and compare it with
unstructured sparsity and block sparsity, we analyze and visualize
the weight matrices after corresponding pruning methods in a real
LSTM model [28]. The hidden size of this LSTM model is 1500. Ta-
ble 1 shows the percentage of the largest weights that are preserved
in various sparsity patterns. Here we show the results ofWix ,Wf x ,
Wcx andWox , other weight matrices have similar results. In this
analysis, the sparsity ratios are all 90%, the bank size of BBS is 32
and the block size of block sparsity is 4 × 4. Unstructured sparsity
by fine-grained pruning naturally preserves 100% largest weights
because it globally prunes weights with smallest magnitudes. BBS
preserves more than 80% of the largest weights by fine-grained
pruning inside each bank, while block sparsity only preserves less
than half of (or even quarter of) the largest weights. Figure 2 vi-
sualizes these three kinds of sparse weight matrices of a 64 × 64
sub-matrix which is randomly selected from the whole 1500 × 1500
Wix . Grey grids indicate non-zero parameters and the grey level
indicates the magnitude of the absolute value. For the second matrix

represented in BBS, each row has two banks (left and right sides
of the dashed line). Each bank has 3 non-zero weights. We can see
that the weight map of BBS is very similar to the weight map of
unstructured sparsity, but the weight map of block sparsity is quite
different because of the locality constraint.

In terms of achievable sparsity and accuracy, experimental results
on two typical data sets [7, 18] demonstrate BBS has almost the
same effectiveness as unstructured sparsity and outperforms block
sparsity, described in Section 6.2.

4 SPARSE MATRIX COMPUTATION AND
FORMAT FOR BBS

As mentioned, the irregularity of unstructured sparsity is not hard-
ware friendly due to unbalanced computation, irregular memory
accesses and decoding overheads. In contrast, the intrinsic bank-
balanced property of BBS enables effective hardware designs to
address these issues. For BBS, we introduce a highly parallel Sp-
MxV design with guaranteed load balance and no vector access
conflicts, and an associated decoding-free sparse matrix format for
the SpMxV design.

4.1 Highly Parallel SpMxV Design
SpMxV consists of multiple dot product operations, one for each
sparse matrix row and the dense vector. The standard practice of
using multiple PEs to parallelize dot products across matrix rows
can reduce computation time. However, irregular memory access
patterns of unstructured sparse matrices restrict further parallelism
within a dot product.

In addition to inter-row parallelism, BBS enables an efficient
SpMxV design to exploit intra-row parallelism (i.e. inter-bank par-
allelism) through the bank-balance partitioning. Figure 3 illustrates
how to exploit inter-bank parallelism in computing a dot product
of two vectors (i.e., a BBS matrix row and the dense vector). The
multiplications for the non-zero elements inside each bank are per-
formed serially, while the multiplications in different banks are
performed in parallel. In this example, the sparse matrix row is
divided into 4 banks, as is shown in different colors. The size of
each bank is 3 and the sparsity is 1/3. The multiplied dense vec-
tor is divided into 4 banks accordingly. Our design computes the

dot product of two vectors by accumulating dot products of sub-
vectors whose sizes are all the number of banks (N). Each bank
of the sparse matrix row provides one non-zero element to form
one sub-vector (e.g., (A,C,E,G)), while dense vector elements are
fetched based on the indices of non-zero values to form another
sub-vector (e.g., (v0,v3,v7,v9)). For computing a dot product of
sub-vectors, N pair-wise multiplications are executed in parallel.
Multiple dot products of sub-vectors are calculated in sequential
and accumulated to obtain the dot product of complete vectors.

Accumulate

Partial dot product: V0A+V3C+V7E+V9G

Skip zeros

V0 V1 V2

V3 V4 V5

V6 V7 V8

V9 V10 V11

Accessed

vector

elements

BSB matrix row

Dense vector

T = 0

T = 1

Bank 0 Bank 1 Bank 2 Bank 3

V0 V3 V7 V9

A 0 B C D 0 0 E F G 0 H

V2 V4 V8 V11
B D F H

A C E G
Bank 0

Bank 1

Bank 2

Bank 3
Complete dot product

Figure 3: Exploiting inter-bank parallelism in dot product
computation of one BBS matrix row and the dense vector.

The bank-balanced property in BBS eliminates load imbalance
and irregular memory accesses. In BBS matrices, every row (and
every bank) has the same number of elements which automatically
guarantees the load balance across rows and banks in SpMxV.When
calculating a partial dot product, BBS ensures one and only one
element is accessed in each bank. Therefore, storing each vector
bank in an independently accessible block RAM can supply vector
elements simultaneously with high bandwidth andwithoutmemory
access conflicts. The detailed FPGA implementation is shown in
Section 5.

4.2 Decoding-Free Sparse Matrix Format
Various sparse matrix formats have been proposed to reduce the
memory footprint of sparse matrices. However, existing formats
introduce decoding overheads when performing sparse matrix mul-
tiplications. For FPGA implementation, decoding sparse formats
consumes hardware resources and incurs latency. In order to elim-
inate decoding overheads, we introduce a sparse matrix format
called Compressed Sparse Banks (CSB) that is specifically designed
for BBS.

Compressed Sparse Row (CSR) is a commonly used sparse matrix
format [1]. We use CSR as a representative encoding of existing
formats for explanation and comparison. Figure 4(a) shows a bank-
balanced sparse matrix represented in dense format. Figure 4(b)
shows its corresponding CSR encoding. CSR incurs two types of
overheads for SpMxV operation. First, CSR format encodes all non-
zero elements in a row-major order. Thus, rearranging the non-zero
elements are inevitable in order to exploit inter-bank parallelism in
SpMxV. Second, CSR format stores column indices and row pointers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

A B C D E F G H

I J K L M N O P

(a) Original densely represented matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B C D E F G H I J K L M N O P

0 2 4 5 8 11 13 14 0 1 4 6 9 11 12 13

0 8 16

CSR

VALUES

COLUMN INDICES

ROW POINTERS

(b) CSR represented matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A C E G B D F H I K M O J L N P

0 0 0 1 2 1 3 2 0 0 1 0 1 2 3 1

CSB

VALUES

BANK INTERNAL

INDICES

Data rearrangement for

inter-bank parallelization

Physical BRAM addresses

(c) CSB represented matrix

Figure 4: The comparison between CSR and CSB.

to track the location of each non-zero value. Thus, calculating mem-
ory addresses is required to fetch vector elements. Other encoding
formats, such as CSC and COO have similar limitations [1].

The proposed CSB format takes advantage of the balanced prop-
erty of BBS and eliminates the need for decoding. Figure 4(c) shows
the CSB representation of the corresponding matrix. The CSB en-
coding uses two arrays to represent a bank-balanced sparse matrix.
In the first array (i.e., values), all non-zero values are first arranged
in row-major order. Inside each row, the first non-zero elements
in each banks (e.g., (A,C,E,G)) are listed first, then the second el-
ements, and so on. The purpose of this data rearrangement is to
explicitly expose inter-bank parallelism, thus every successive N
elements in CSB can be directly fetched and computed upon in par-
allel. The second array (i.e., indices) lists the bank internal indexes
of non-zero values which are column indices modulo bank size K.
When each of the N vector banks is stored in a separate BRAM
block on FPGA, the bank internal indices can be directly regarded
as physical addresses to fetch the N corresponding vector elements
in the BRAM blocks.

5 LSTM ACCELERATOR
In this section, we introduce the BBS accelerator, an FPGA-based
accelerator for LSTM networks with bank-balanced pruning. The
BBS accelerator is implemented as an accelerator on the PCIe I/O
bus to serve LSTM inference requests from the host server. Our
design specially accelerates LSTM networks at a batch size of one
to reduce inference latency by devoting the on-chip resources to
exploiting as much parallelism as possible from one single sample.

5.1 Overall Architecture
Figure 5 shows the overall architecture of the BBS accelerator, which
consists of a sparse matrix-vector multiplication unit (SpMxV Unit),
an element-wise vector operation unit (EWOP Unit), a direct mem-
ory access module (DMA) for load/store operations, on-chip memo-
ries for matrices and vectors (Matrix Memory and Vector Memory),
and a central controller. Before hardware acceleration, the host

FPGA

SpMxV PE

*

...

*

*
* +

+
+

EWOP

ACT

+

Controller
Instruction Buffer

D
M
A

*
Private
Vector
Buffer

Output

+

DRAM
Cntlr

PCIe
Cntlr

Off-chip
DRAM

Host
Server

Vector Memory

Matrix
Memory

Indices

Values

Figure 5: Overall architecture.

server uses the bank-balanced pruning method to prune weight ma-
trices and represents sparse matrices in our proposed Compressed
Sparse Banks (CSB) format, then a lightweight compiler generates
instructions for the hardware accelerator to accomplish the com-
putation of LSTM. The controller receives and stores instructions
from the host server in the instruction buffer and dispatches them
to their corresponding modules to execute.

The two important types of instructions are load/store instruc-
tions and computational instructions:

Load/Store Instructions. Load/Store instructions are executed
in the DMA module to transfer weight matrices and input/output
vectors. A load instruction reads data (model weights and inputs)
from host memory/off-chip DRAM to on-chip memories. A store
instruction writes data (outputs) from on-chip memories to host
memory/off-chip DRAM. In practice, in many cases weight prun-
ing can reduce model size enough to fit in on-chip memories. For
serving real-time LSTM with low latency, the default mode is to
completely rely on on-chip memories. For large models that can
not fully fit into on-chip memories even with compression, the
BBS accelerator uses load/store instructions to read/write weight
matrices from/to off-chip DRAM.

Computational Instructions. As introduced in Section 2, all
operations in sparse LSTM can be put into 2 categories: SpMxV
and EWOP (including addition, multiplication and three kinds of
activations). Therefore, we design two kinds of computational in-
struction: SpMxV instruction and EWOP instruction to fulfill LSTM
computation. The SpMxV instruction is executed in the SpMxV
unit to read the required matrix and vector from on-chip memo-
ries, then compute dot products for matrix rows, and finally write
the result vector back to the vector memory. The EWOP instruc-
tion is executed in the EWOP unit to read required vector(s) from
the vector memory and write the resulting vector of element-wise
addition/multiplication/activations back to the vector memory.

5.2 SpMxV Unit
The SpMxV unit implements the highly parallel design described
in Section 4.1. The SpMxV unit consists of M parallel processing
elements (PEs) that compute dot products of distinct matrix rows
and the dense vector concurrently to exploit inter-row parallelism,
while each PE is designed to exploit intra-row (i.e., inter-bank)
parallelism in a single dot product operation.

In the center of Figure 5, we show the detailed architecture
of a PE. Each PE contains a private vector buffer (PVB) to buffer
the dense vector being multiplied, because vector elements are
randomly accessed multiple times for all matrix rows in SpMxV.
The PE computes the dot product of two vectors by accumulating
dot products of sub vectors. This computation includes 5 steps: (1)
The PE reads N matrix row elements from the matrix memory and
N vector elements based on the sparse indices from the private
vector buffer. (2) N multipliers operate simultaneously to obtain N
scalar products. (3) An N-input adder tree sums N scalar products
to calculate the partial dot product. (4) One more accumulator is
used to obtain the complete dot product. (5) The dot product result
is written back to global vector memory. The PE is fully pipelined
so that one operation can be processed per clock cycle.

With M PEs and N multipliers per PE, this PE array achieves
M × N parallelism for a single SpMxV operation.

5.3 Private Vector Buffer
In each SpMxV PE, N weight elements can be simultaneously ac-
cessed in one clock cycle because non-zero values have already
been rearranged by CSB encoding format and contiguously stored
in matrix memory. However, to access dense vector elements, the
PVB needs to support N random memory accesses concurrently.
Each BRAM in FPGA provides only two read and/or write ports.
Using a single BRAM to buffer dense vectors can not supply N
elements from random addresses concurrently. Multi-pumping [25]

and vector replication [14] are two alternative solutions. Multi-
pumping supplies N elements by running the PEs with N times
lower frequency than the BRAM. This approach decreases clock
rate significantly. Vector replication provides more ports by creat-
ing replicas of the entire vector. Although this approach is simple
to implement, it is difficult to scale due to limited on-chip storage
resources in FPGA and generally large input/output/state vectors
in LSTM. Since each private vector buffer has stored a replicate
of the multiplied vector for parallel computing across PEs, further
replicating vectors inside each PE is unacceptable.

In order to support random vector accesses at a high bandwidth
without replicas inside a PE, we adopt the banking approach to
buffer vectors [5]. In this approach, the multiplied vector is also split
into banks according to the bank partitioning of matrix rows in BBS.
As shown in Figure 6, N banks of vector elements are stored in N
independently accessible BRAMs. Therefore, the PVB can provide N
elements simultaneously with N bank internal indices (i.e., physical
addresses for each BRAM). Weight matrices in LSTMs usually have
the same size, so we use a unified N in pruning and configure N
as the number of BRAMs in PVB. However, for some LSTMs that
have weight matrices of different sizes, different Ns are selected in
pruning to find an optimal sparsity, and the largest N is configured
as the number of BRAMs in PVB.

V0 V1 V2 V3 V4 V5 V6 V7

V8 V9 V10 V11 V12 V13 V14 V15

V32 V33 V34 V35 V36 V37 V38 V39

···

Accessed

vector

elements

Bank

internal

indices

···

2

3

6

V2

V11

V38

0 1 2 3 4 5 6 7

Bank0

Bank1

Bank4

···
···

···
···

Figure 6: Banked private vector buffer.

In some studies, banking is adopted to support random memory
accesses to achieve high memory bandwidth [5, 31]. However, due
to the irregularity of data accesses, banked memory cannot handle
imbalance workloads across banks and concurrent access requests
to the same BRAM. Addressing these issues requires additional
logic and clock cycles [5, 31]. The biggest difference of our banked
private vector buffer is that balanced memory access requests and
no memory access conflicts are automatically guaranteed because
of the intrinsic bank-balanced property of BBS. The SpMxV PE
accesses one and only one element in each BRAM per cycle.

Before a SpMxV operation, the vector to be multiplied requires
to be duplicated in each PE’s private vector memory to exploit
inter-row parallelism. This brings new challenges. First, broadcast-
ing vector elements to various PEs leads to high fan-out and thus
results in a low achievable clock frequency. We use a systolic array
structure to achieve high clock frequency, similar to [22]. The sec-
ond is the additional access latency. We double-buffer the private
vector buffer for pipelined data transfer and computation.

5.4 EWOP Unit
The EWOP unit performs various element-wise operations on vec-
tors based on the instruction opcode. Vector addition and multipli-
cation generate one result vector by reading two source vectors.
Activation functions only read one source vector and apply non-
linear functions to it to generate one result vector. The EWOP
unit contains M operators operating in parallel for each kind of
operations to reduce latency.

5.5 Controller
In the computation flow of LSTM, some SpMxV operations and
EWOP operations among different gates can be performed simulta-
neously. The software compiler analyzes the dependencies and in-
dicates the dependencies to instructions. The controller parallelizes
instructions according to their dependent instructions indicated by
the software compiler. When the SpMxV unit or the EWOP unit is
idle (which means an instruction is finished), the controller checks
whether the next instruction has a dependency on the instruction
being executed on the other unit. If not, the controller dispatches
the next instruction to the idle unit, so that the SpMxV unit and
EWOP unit can work simultaneously.

6 EVALUATION
Our evaluation centers around two aspects: the model accuracy of
BBS and the hardware efficiency of BBS accelerator.

6.1 Experimental Setup
We implemented the BBS accelerator in System Verilog, synthesized
with Quartus Prime 17.1, and evaluated on a custom FPGA PCIe
card with an Intel-Arria 10 FPGA [3]. The FPGA has 4 GB DDR3-
1600 DRAM external memory. The host CPU is an Intel Xeon E5
2650 processor which is only responsible for data pre-processing
and result collecting. The FPGA communicates with the host CPU
through a PCIe Gen 3x8 bus, which supports up to 16 GB/s of
bidirectional bandwidth.

We evaluate the system with an LSTM language model of the
PTB dataset [18] and an LSTM speech recognition model of the
TIMIT dataset [7]. PTB dataset is widely used in Natural Language
Processing (NLP) research. It consists of 929k training words, 73k
validation words, and 82k test words and it has 10k words in its
vocabulary. We adopt the LSTM model in [28], which achieves very
good quality on the PTB dataset. The small model has 200 hidden
units per layer, while the medium one has 650 and the large one
has 1,500. The TIMIT corpus is designed to provide speech data for
acoustic-phonetic studies. It contains broadband recordings of 630
speakers of eight major dialects of American English, each reading
ten phonetically rich sentences. For the LSTM speech recognition
model, we set the input size to 153, the hidden size to 1024, and
projection size to 512 which are consistent with previous studies
[8, 21].

6.2 BBS Model Accuracy
6.2.1 ComparisonwithUnstructured andBlock Sparsity. We
first evaluate the model accuracy of BBS and compare it with un-
structured sparsity and block sparsity. Figure 7 and Figure 8 show
the sparsity-accuracy trade-off results of various sparsity patterns

on PTB and TIMIT data sets, respectively. We use 64 banks in BBS
and 4 × 4 blocks in block sparsity. For experiments of the LSTM
language model, we use the large model with the hidden size of
1,500. Perplexity is a metric to quantify language model quality. As
shown in Figure 7, the perplexity curve of our BBS is very close to
the perplexity curve of unstructured sparsity. Both unstructured
sparsity and BBS can preserve the perplexity until 80% of weights
are pruned away. These two patterns even achieve slightly bet-
ter model accuracy at around 60% sparsity compared to the dense
baseline one. The perplexity of block sparsity starts to increase
significantly at 40% sparsity. Experiments on the LSTM speech
recognition model show similar results (shown in Figure 8). BBS
and unstructured sparsity can achieve 90% sparsity without accu-
racy loss, while block sparsity can only achieve 70% sparsity. These
experimental results demonstrate that BBS has almost the same
effectiveness as random sparsity and outperforms block sparsity in
terms of achievable accuracy or sparsity during pruning.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Sparsity

78
79
80
81
82
83
84
85

Pe
rp

le
xi

ty
(th

e
lo

w
er

 th
e

be
tte

r) Block Sparsity
BBS
Unstructured Sparsity
Dense Baseline

Figure 7: Sparsity-Perplexity trade-off of various sparsity
patterns on PTB dataset.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Sparsity

23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0

Ph
on

e
Er

ro
r R

at
e

(th
e

lo
w

er
 th

e
be

tte
r) Block Sparsity

BBS
Unstructured Sparsity
Dense Baseline

Figure 8: Sparsity - Phone Error Rate trade-off of various
sparsity patterns on TIMIT dataset.
6.2.2 Sensitivity to Bank Size. We further explore the accuracy
sensitivity of BBS to the bank size. As a comparison, we also explore
the accuracy sensitivity of block sparsity to the block size. Table 2
shows the model accuracy at varying block/bank sizes for the large
LSTM language model. As shown, BBS achieves almost the same
model accuracy regardless of the change of bank size. For block
sparsity, however, increasing the block size adversely affects model
accuracy.
6.2.3 Quantization onPrunedModel. Quantization can achieve
more compression rate and hardware efficiency for deep learning
models by reducing the number of bits that represents a weight
[9, 15]. In this work, we study the accuracy sensitivity of BBS to

Table 2: Perplexity sensitivity to the block size in block spar-
sity and the bank size in BBS.

Model Perplexity on Sparsity
60% 70% 80%

Block Sparsity
block size: 4×4 80.6 83.2 88.1
block size: 8×8 82.4 86.4 95.2
block size: 16×16 83.7 88.3 99.5

BBS
bank size: 25 78.3 78.6 79.4
bank size: 50 78.4 78.7 79.2
bank size: 100 78.4 78.6 79.2

quantization bits. We apply the linear quantization method to LSTM
models after bank-balanced pruning with 16-bit, 8-bit, and 4-bit
fixed points. Both weights and activations are quantized. Table 3
shows the effects of quantization under different bits on the large
LSTM language model after bank-balanced pruning. The perplex-
ity is 78.8 for the original dense model and slightly increases to
79.2 after pruning away 80% weights with BBS. 16-bit quantization
on the pruned model maintains the same perplexity, while more
aggressive quantization deteriorates perplexity.

Table 3: Language model perplexity after quantization un-
der different bits.

Quantization Scheme Perplexity (%)
float-32 dense model 78.8
float-32 BBS model 79.2
fixed-16 BBS model 79.2
fixed-8 BBS model 79.8
fixed-4 BBS model 143.1

6.3 BBS Accelerator Efficiency
6.3.1 ResourceUtilization, ClockRate andPowerConsump-
tion. Table 4 shows the resource utilization, clock rate and power
consumption of our BBS accelerators. The reported results are based
on post-fit results from Quartus Prime 17.1. The operator bits (i.e.,
data precision) is 16-bit since 16-bit is accurate enough to maintain
model accuracy. The BBS accelerator sets to M = 64, N = 64, and
thus the accelerator contains 64 PEs in the SpMxV unit, and each
PE has 64 multipliers executing in parallel. The Intel Arria 10 FPGA
contains 1518 DSPs which can be implemented as 3036 multipliers.
The LSTM accelerator fully utilizes DSPs for multipliers, and use
additional ALMs for extra multipliers. We use M20Ks for the matrix
memory, and use MLABs for the private vector buffer because it
consists of relatively small memories that require independently
accessible ports.

Table 4: Resource utilization, clock rate and power consump-
tion.

ALMs (%) M20Ks (%) DSPs (%)
289k (68%) 2509 (92%) 1518 (100%)
Clock Rate (MHz) Power (Watt)

200 19.1

6.3.2 Latency and Throughput. Our accelerator is highly effi-
cient even with a batch size of 1, so we measure the latency of our
BBS accelerator without batching and calculate the corresponding
throughput. For small, medium and large LSTM language models
on the PTB data set, we also use three different numbers of banks
(16,32,64) to prune models. Pruning away 80% weights incurs no
effect on model accuracy. Table 5 shows the latency of one LSTM
and its corresponding throughput. The achievable performance in-
creases as the model scale or the number of bank increases because
of higher hardware utilization of the underlying PEs. In the case
of the large model with 1,500 hidden units and using 64 banks in
matrix partitioning, our accelerator takes 4.8us to finish a whole
LSTM layer, corresponding to 750.9 GOPS at a batch size of one.

Table 5: Latency and throughput results of running LSTM
language networks of various scales and various numbers
of banks.

LSTM hidden size Num of banks Latency
(us)

Throughput
(GOPS)

200 (small)
16 1.7 37.3
32 1.4 43.4
64 1.3 47.4

650 (medium)
16 4.3 158.8
32 2.8 238.0
64 2.1 318.5

1500 (large)
16 13.9 257.7
32 7.8 458.5
64 4.8 750.9

6.3.3 Comparison with state-of-the-art LSTM Accelerators.
We compare the performance of our BBS accelerator with three
state-of-the-art LSTM accelerators on FPGA: ESE [8], C-LSTM [21]
and DeltaRNN [6]. These three studies adopt different optimiza-
tion techniques to reduce computation requirements. ESE [8] uses
the weight pruning based compression technique and improve in-
ference efficiency through batching multiple samples, but lacks
optimization of irregular memory accesses to reduce latency for
a single batch request. C-LSTM [21] represents weight matrices
with block-circulant matrices and proposes an accelerator with an
FFT-based computing kernel. DeltaRNN [6] uses the delta network
algorithm to reduce MxV operations and corresponding weight
fetches by skipping dispensable neuron activation changes below a
threshold.

Table 6 shows the comparison results. We apply BBS to the same
LSTM model on the TIMIT dataset as ESE and C-LSTM adopt. We
use the accuracy and performance numbers of ESE, C-LSTM and
DeltaRNN reported in their papers. The performance numbers of
DeltaRNN are based on GRU which is an optimistic estimation
because GRU is simpler than LSTM. With the same model on the
same data set, BBS achieves comparable compression rate andmodel
accuracy as ESE and C-LSTM. While our BBS accelerator achieves
2.3x and 3.7x improvement on energy efficiency, and 34.4x and 7.0x
speedup on latency (or throughput at a batch size of one) compared
to ESE and C-LSTM. The reason why BBS accelerator can achieve
better single batch performance than ESE is that it enables the extra

dimension of parallelism and addresses the low memory bandwidth
issue of irregular memory access in SpMxV.

7 RELATEDWORK
Network Compression. Network compression can reduce themem-

ory and computation requirements of a neural network, increase
its inference speed and save energy [9]. Compression algorithms
mainly include pruning [10], sparsity-inducing regularization [23],
quantization [15]. Based on the original sparsity method, further
studies propose structured sparsity methods by adding constraints
on the locality of non-zero weights [17, 19, 26]. Structured sparsity
is more amenable to hardware acceleration compared to unstruc-
tured sparsity.

DNN accelerators. Hardware acceleration of DNNs has received
significant attention from both industry and academia [4, 12, 16, 29].
Due to the widely adopted pruning-based compression techniques,
many accelerators for sparse neural networks are proposed [8, 21,
30]. These works explored specialized sparse matrix multiplication
module that directly operates on sparse neural networks. Although
these accelerators achieve higher performance than general pro-
cessors, the irregular computation and memory accesses in sparse
neural networks still restrict the maximum parallelism achievable
on customized accelerators.

SpMxV accelerators. SpMxV is most computation-intensive and
memory-intensive part in LSTM inference. Many FPGA and GPU ac-
celerators for SpMxV have been proposed [2, 5]. However, SpMxV is
hard to optimize due to its irregular memory access characteristics.
By contrast, neural network pruning methods bring a restricted
freedom to define the sparsity structure (e.g. hardware friendly
sparsity) in weight matrices. BBS is a kind of structured sparsity
pattern that increases hardware efficiency, while incurs negligible
loss on model accuracy.

8 CONCLUSION
This paper proposes a novel sparsity pattern, BBS (bank-balanced
sparsity), that achieves both high model accuracy for pruning LSTM
and high hardware efficiency on FPGA. Our insight into design-
ing BBS is partitioning weight matrix rows into banks for parallel
computing and adopting fine-grained pruning inside each bank to
maintain model accuracy. Evaluated on speech recognition and lan-
guage model tasks, BBS achieves almost the same model accuracy
as purely unstructured sparsity at various sparsity levels. Our BBS
accelerator on FPGA takes advantage of the intrinsic bank-balanced
property of BBS, achieving high efficiency even for a batch size
of 1. Compared to state-of-the-art FPGA accelerators for LSTM
with different compression techniques, BBS accelerator achieves
2.3 ~3.7x improvement on energy efficiency and 7.0 ~34.4x reduction
on latency with negligible loss of model accuracy.

9 ACKNOWLEDGEMENTS
We would like to thank Ningyi Xu, Wenqiang Wang, Bojie Li and
Yun Wang for all technical discussions and valuable suggestions on
improving this paper. We thank the anonymous reviewers for their
insightful feedbacks and comments. Shijie Caowas partly supported
by National Nature Science Foundation of China (No.61772159).

Table 6: Speedup comparison with state-of-the-art LSTM accelerators

ESE[8] C-LSTM[21] DeltaRNN[6] Ours
Platform XCKU060 Virtex-7 XC7Z100 Arria 10 GX1150

Frequency (MHz) 200 200 125 200
Sparsity (%) 88.7 87.5 - 87.5
Quantization fixed-12 fixed-16 fixed-16 fixed-16

Accuracy Degradation 0.30% 0.32% - 0.25%
Throughput (GOPS) 282.2 131.1 192.0 304.1

Power (W) 41.0 22.0 7.3 19.1
Energy Efficiency (GOPS/W) 6.9 6.0 26.3 15.9

Latency(us) 82.7 16.7 - 2.4
Throughput at batch 1 (GOPS) 8.8 43.7 192.0 304.1

Effective Throughput
at batch 1 (GOPS) 79.2 349.6 1198.0 2432.8

REFERENCES
[1] 2018. Sparse Matrix Formats. https://docs.scipy.org/doc/scipy/reference/sparse.

html/. (2018).
[2] Nathan Bell and Michael Garland. 2008. Efficient sparse matrix-vector multiplica-

tion on CUDA. Technical Report. Nvidia Technical Report NVR-2008-004, Nvidia
Corporation.

[3] AdrianMCaulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
and others. 2016. A cloud-scale acceleration architecture. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Press, 7.

[4] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
and others. 2018. A Configurable Cloud-Scale DNN Processor for Real-Time AI.
In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). IEEE.

[5] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S Chung, and Greg Stitt.
2014. A high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication. In Field-Programmable Custom Computing Machines (FCCM), 2014
IEEE 22nd Annual International Symposium on. IEEE, 36–43.

[6] Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, and Tobi Delbruck. 2018.
DeltaRNN: A Power-efficient Recurrent Neural Network Accelerator. In Proceed-
ings of the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 21–30.

[7] John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G Fiscus, and David S
Pallett. 1993. DARPA TIMIT acoustic-phonetic continous speech corpus CD-ROM.
NIST speech disc 1-1.1. NASA STI/Recon technical report n 93 (1993).

[8] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang
Xie, Hong Luo, Song Yao, Yu Wang, and others. 2017. Ese: Efficient speech recog-
nition engine with sparse lstm on fpga. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM, 75–84.

[9] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[10] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems. 1135–1143.

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[12] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, and others.
2017. In-datacenter performance analysis of a tensor processing unit. In Proceed-
ings of the 44th Annual International Symposium on Computer Architecture. ACM,
1–12.

[13] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande,
Edward Lockhart, Florian Stimberg, Aaron van den Oord, Sander Dieleman, and
Koray Kavukcuoglu. 2018. Efficient Neural Audio Synthesis. arXiv preprint
arXiv:1802.08435 (2018).

[14] Charles Eric LaForest, Ming G Liu, Emma Rae Rapati, and J Gregory Steffan. 2012.
Multi-ported memories for FPGAs via XOR. In Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays. ACM, 209–218.

[15] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016. Fixed point
quantization of deep convolutional networks. In International Conference on
Machine Learning. 2849–2858.

[16] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen,
and Tianshi Chen. 2016. Cambricon: An instruction set architecture for neural
networks. In ACM SIGARCH Computer Architecture News, Vol. 44. IEEE Press,
393–405.

[17] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J
Dally. 2017. Exploring the regularity of sparse structure in convolutional neural
networks. arXiv preprint arXiv:1705.08922 (2017).

[18] Mitchell Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz, and Ann Taylor.
1999. Treebank-3 LDC99T42. CD-ROM. Philadelphia, Penn.: Linguistic Data
Consortium (1999).

[19] Sharan Narang, Eric Undersander, and Gregory Diamos. 2017. Block-Sparse
Recurrent Neural Networks. arXiv preprint arXiv:1711.02782 (2017).

[20] Haşim Sak, Andrew Senior, and Françoise Beaufays. 2014. Long short-term mem-
ory recurrent neural network architectures for large scale acoustic modeling. In
Fifteenth annual conference of the international speech communication association.

[21] Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, Yanzhi Wang, and Yun
Liang. 2018. C-LSTM: Enabling Efficient LSTM using Structured Compression
Techniques on FPGAs. In Proceedings of the 2018 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays. ACM, 11–20.

[22] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han
Hu, Yun Liang, and Jason Cong. 2017. Automated systolic array architecture
synthesis for high throughput CNN inference on FPGAs. In Design Automation
Conference (DAC), 2017 54th ACM/EDAC/IEEE. IEEE, 1–6.

[23] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in Neural Information
Processing Systems. 2074–2082.

[24] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, and
others. 2016. Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[25] Hasan Erdem Yantir, Salih Bayar, and Arda Yurdakul. 2013. Efficient implemen-
tations of multi-pumped multi-port register files in FPGAs. In Digital System
Design (DSD), 2013 Euromicro Conference on. IEEE, 185–192.

[26] Zhuliang Yao, Shijie Cao, andWencong Xiao. 2018. Balanced Sparsity for Efficient
DNN Inference on GPU. arXiv preprint arXiv:1811.00206 (2018).

[27] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das,
and Scott Mahlke. 2017. Scalpel: Customizing dnn pruning to the underlying
hardware parallelism. In Proceedings of the 44th Annual International Symposium
on Computer Architecture. ACM, 548–560.

[28] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329 (2014).

[29] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 161–170.

[30] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator for sparse
neural networks. In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on. IEEE, 1–12.

[31] Shijie Zhou, Rajgopal Kannan, Yu Min, and Viktor K Prasanna. 2018. FASTCF:
FPGA-based Accelerator for STochastic-Gradient-Descent-based Collaborative
Filtering. In Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 259–268.

https://docs.scipy.org/doc/scipy/reference/sparse.html/
https://docs.scipy.org/doc/scipy/reference/sparse.html/

	Abstract
	1 Introduction
	2 Background
	2.1 Long Short-Term Memory.
	2.2 Weight Pruning

	3 Bank-Balanced Sparsity
	3.1 Bank-Balanced Sparsity Pattern
	3.2 Bank-Balanced Pruning Algorithm
	3.3 Analysis of Our Pruning Method

	4 Sparse matrix computation and Format for BBS
	4.1 Highly Parallel SpMxV Design
	4.2 Decoding-Free Sparse Matrix Format

	5 LSTM Accelerator
	5.1 Overall Architecture
	5.2 SpMxV Unit
	5.3 Private Vector Buffer
	5.4 EWOP Unit
	5.5 Controller

	6 Evaluation
	6.1 Experimental Setup
	6.2 BBS Model Accuracy
	6.3 BBS Accelerator Efficiency

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

