
ANT: Exploiting Adaptive Numerical Data Type for
Low-bit Deep Neural Network Quantization

Cong Guo∗†1, Chen Zhang‡, Jingwen Leng∗†2, Zihan Liu∗†, Fan Yang‡, Yunxin Liu§, Minyi Guo∗†2 and Yuhao Zhu¶
∗Shanghai Jiao Tong University, †Shanghai Qi Zhi Institute

{guocong, altair.liu}@sjtu.edu.cn, {leng-jw, guo-my}@cs.sjtu.edu.cn
‡Microsoft Research, §Institute for AI Industry Research (AIR), Tsinghua University
chzhang1990@gmail.com, fanyang@microsoft.com, liuyunxin@air.tsinghua.edu.cn

¶University of Rochester, yzhu@rochester.edu

Abstract—Quantization is a technique to reduce the compu-
tation and memory cost of DNN models, which are getting in-
creasingly large. Existing quantization solutions use fixed-point
integer or floating-point types, which have limited benefits, as
both require more bits to maintain the accuracy of original
models. On the other hand, variable-length quantization uses
low-bit quantization for normal values and high-precision for a
fraction of outlier values. Even though this line of work brings
algorithmic benefits, it also introduces significant hardware
overheads due to variable-length encoding and decoding.

In this work, we propose a fixed-length adaptive numerical
data type called ANT to achieve low-bit quantization with tiny
hardware overheads. Our data type ANT leverages two key
innovations to exploit the intra-tensor and inter-tensor adaptive
opportunities in DNN models. First, we propose a particular
data type, flint, that combines the advantages of float
and int for adapting to the importance of different values
within a tensor. Second, we propose an adaptive framework
that selects the best type for each tensor according to its
distribution characteristics. We design a unified processing
element architecture for ANT and show its ease of integration
with existing DNN accelerators. Our design results in 2.8×
speedup and 2.5× energy efficiency improvement over the state-
of-the-art quantization accelerators.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved great success
in a variety of application domains, including computer
vision [21] and natural language processing [18]. With
the tensor-based computations as the dominant patterns,
specialized tensor accelerators have been introduced for
DNN inference [8], [14], [26], [30], [37], [68], [88] and
training [46], [64], [69]. However, the size of DNN models
increases by 240× every two years, significantly exceeding
the hardware improvement rate (3.1× every two years) [29].
For instance, the recent large Transformer-based GPT-3 [5]
model has 175 billion parameters, whose single inference
needs to take around 740 TOPs (tera operations).

Exploiting DNN model sparsity and redundancy through
algorithm and hardware co-design is a promising way to
overcome the widening computation gap between model and

1 This work started during his internship at Microsoft Research.
2 Jingwen Leng and Minyi Guo are corresponding authors of this paper.

hardware. There are generally two approaches, model pruning
and model quantization, for reducing the computation and
memory costs of DNN models. First, pruning away the unim-
portant elements results in sparse DNN models with reduced
parameter counts. For example, NVIDIA has introduced the
sparse tensor core since its Ampere architecture [64]. Second,
model quantization uses narrow bit length to represent values
to save memory and computation. For example, Google’s first
generation TPU [46] uses an 8-bit integer type for inference,
while other commercial accelerators use the floating-point
types with reduced precisions, such as FP16 [64], TF32 [64],
and BF16 [46], for accelerating the DNN training.

All the above algorithm and hardware co-design works for
DNN models leverage the traditional numerical data types
such as int and float, and these types are inherently
inefficient for DNN models. The reason is that the values
in DNNs’ tensors have both a non-uniform distribution and
non-uniform importance. For instance, many weight tensors
in DNNs follow the Gaussian-like distribution, with many
values around zero, which, according to many DNN pruning
works [40], [47], are not important and hence can be pruned.
However, the float type has the highest resolution (called
rigid resolution [52]) for these small values, wasting its bit
length. On the other hand, the Gaussian-like distribution also
has a long tail, whose range is critical for the DNN model
accuracy [66], [86]. The int type needs a long bit length to
represent the large values. Given the above reasons, both int
and float data types usually need more bits to maintain
the original model accuracy [61], [78].

To achieve even higher quantization benefits (i.e., lower bit
length), prior works have proposed the outlier-aware quanti-
zation method and designed special hardware support [66],
[86]. The basic idea is to employ the low precision 4-bit int
for the small values with a high appearance frequency and
high precision 32/16-bit float or int for large values with
an extremely low frequency. However, this method results in
variable-length encoding and hence unaligned memory access,
which are incompatible with the existing DNN accelerators
and require a complex and high-cost hardware design.

In this work, we present an adaptive numeric data type

ar
X

iv
:2

20
8.

14
28

6v
1

 [
cs

.L
G

]
 3

0
A

ug
 2

02
2

called ANT, which can adapt to the importance of different
value intervals within a tensor (i.e., intra-tensor adaptivity)
and the distribution of different tensors (i.e., inter-tensor
adaptivity). More importantly, ANT has aligned memory
accesses and efficient low-bit computation, leading to large
quantization benefits and low hardware overheads. We first
propose a novel data type primitive called flint that
combines the advantages of float with a large range and
int with high precision for important value intervals. We
leverage the variable-length first-one coding technique to
encode the exponent field. As a result, the overall encoding
has a fixed length, which is friendly for hardware decoding.

We then design a general framework that adapts to different
distributions of weight and activation tensors, which include
not only the above Gaussian distribution and also Laplace
and uniform-like distributions. We build upon the previous
works like PoT (i.e., power of two) type [58], [94], and show
how to integrate them into our ANT framework that chooses
the best-fit numerical type to minimize the quantization error.
All those primitive types have the fixed-length, and a tensor
can only have a fixed primitive type. Compared to previous
works that only exploit the intra-tensor adaptivity [66], [73],
[86] or inter-tensor adaptivity [73], [78], the ANT framework
can achieve both with high hardware efficiency.

We further propose a unified TypeFusion processing
element (PE) design that can handle the case when the
input tensor and weight tensor have different primitive types.
The TypeFusion PE can be implemented on top of the
original float or int multiply-accumulate (MAC) unit.
The required modification is a simple type decoder, which
decodes different primitive types in ANT to a unified format
for computing on the underlying float or int MAC unit.

The proposed ANT framework targets to solve the problem
of the low-bit (i.e., 4-bit) quantization, which could still
degrade the original model accuracy. We show that ANT is
compatible with mixed-precision quantization [6], [7], [23],
[24], [57], [64], [66], [73], [74], [81], [86], [95]. In specific,
our 4-bit ANT PE design can naturally support 8-bit int
PE with little modification. Owing to the mixed-precision
support, ANT can use the 4-bit representation for over 90%
tensors and still maintain the same level of accuracy as the
original full-precision models.

We describe how to integrate the above ANT PEs into
existing DNN accelerator architectures such as systolic array
and tensor core [46], [64]. We present several optimizations
to minimize the overhead of using ANT’s TypeFusion PE. In
particular, we show that ANT only imposes a simple type
extension for the multiply-accumulate instruction, leaving
the original programming model unmodified. Our evaluation
results show that the ANT-based accelerator surpasses the
existing mixed-precision accelerator BitFusion [73] by 2.8×
performance improvement and 2.5× energy reduction.

We make the following contributions in this paper.
• We demonstrate the opportunities for adaptive quan-

tization at both the intra-tensor level and the inter-
tensor level, for which we present a unified qualitative
framework to analyze the hardware overhead introduced
by previous low-bit quantization works.

• We propose a composite adaptive numeric data type
framework called ANT that can exploit the adaptive
opportunities at both the intra- and inter-tensor levels
in a hardware-friendly fashion.

• We propose a unified TypeFusion processing element
(PE) design that can handle the case when the input
tensor and weight tensor have different primitive types.

• We describe how to integrate the above ANT PEs to
existing DNN accelerator architectures such as systolic
array, which achieves the same level of accuracy as orig-
inal full-precision models and significantly outperforms
existing quantization accelerator under the same area.

II. BACKGROUND

This section presents relevant background on DNN quanti-
zation, which has been widely studied to reduce the memory
and computation cost of DNN models.

A. Quantization Metric

Many prior studies [2], [17], [60], [89] have shown that
the optimization target of quantization is to reduce the
MSE (Mean Square Error) between the original model and
quantized model. In the digital image processing field [45],
the MSE metric is formally defined by the following equaiton:

MSE = E[(x− x̂)2]

=
∫
(x− x̂)2 p(x)dx,

where x and x̂ are the original and quantized value, respec-
tively, and p(x) is the the probability density function.

To reduce the quantization MSE, it is natural to choose a
numeric type whose quantization resolution distribution is
similar to the tensor distribution [2], [17], [60], [89]. Many
researchers have proposed the distribution-aware quantization
to address the non-uniform distribution, e.g., the Huffman
encoding [39] and outlier-aware quantization [66], [86].

B. Fixed-length Quantization

Fixed-length quantization usually uses a narrow bit length
representation based on int type or float type. For
example, there are works using 4-bit or 8-bit int types
(called int4 and int8, respectively) to quantize the weight
tensors or activation tensors in DNN models. The float-
based types can be represented by the following equation,
with a varying exponent and mantissa filed.

Real value = sign×2exponent - bias×1.mantissa (1)

For example, FP16 [48] uses a 5-bit exponent and 10-bit
mantissa (5E10M), while BF16 [46] and TF32 [64] use the

configuration of 8E7M and 8E10M, respectively. There are
also other more aggressive numerical types as follows.

PoT type [58], [94] (power of two) can be viewed as
a special format of float type with only the exponent
field and no mantissa field. As a result, it can represent a
large value range and its multiplication can be simplified to
addition.

AdaptiveFloat type [78] extends the basic float type to
reduce the quantization errors for tensors with a non-uniform
distribution (e.g., Gaussian-like distribution). Its quantization
framework adaptively sets the tensor-wise exponent bias to
match the Gaussian-like distribution and reduce the MSE.

The quantization and dequantization function for a quan-
tized element ŵ can be generalized to the following equation:

ŵ = s ·Dequant[Clamp(Quant(
w
s
),min,max)] (2)

where s is the quantization scale factor and, min and max
are the lower and upper thresholds for the clipping function
Clamp(·). The operator Quant represents the quantization
function. For example, the quantization function for int
is a simple rounding-to-nearest function. After that, the
dequantization operator Dequant can decode the quantized
number to the original type (e.g., 32-bit float or FP32),
which is required for the quantization-aware training [42].

For memory-aligned quantization, we follow the common
practice of per-channel weight quantization [61], which
applies a separate scale factor for each output channel without
additional hardware overhead. For the input activations, we
use the per-tensor scale factors because the per-channel
activation quantization is challenging to implement [53],
[61]. These quantization granularities are widely used and
supported by the DNN quantization frameworks such as
TensorRT [63]. Moreover, we use the unsigned type to
quantize activation tensors after ReLU efficiently [52], [66],
[73], [78], as its outputs are all non-negative. However, note
that our framework supports both the signed numerical types
and unsigned numerical types as we describe later.

C. Mixed-precision Quantization

Mixed-precision DNN quantization method uses different
numbers of bits for a given data type to represent values in
DNN tensors. Many works [6], [7], [23], [24], [57], [64],
[66], [73], [74], [81], [86], [95] have shown that the mixed-
precision method is efficient for quantizing DNN layers that
have different importance and sensitiveness for the bit length.

The most widely used approach is tensor-wise mixed-
precision, such as Bit Fusion [73] and NVIDIA’s latest
tensor core [64]. In the tensor-wise quantization, all elements
in each tensor use the same fixed-length numerical type.
Thus, the tensor-wise mixed-precision is hardware-friendly
without incurring much overhead, which has two kinds of
implementation, i.e., temporal or spatial mixed-precision. For
example, a temporal design needs four cycles to perform an

ResNet-18
activation tensor

BERT-Base
weight tensor

BERT-Base
activation tensor

Int PoT

Uniform-like Gaussian-like Laplace-like

Wide rangeHigh precision

In
tr

a-
te

ns
or

In
te

r-
te

ns
or

Figure 1: Intra-tensor and inter-tensor adaptivity.

8-bit × 8-bit multiplication using a 4-bit PE [76], while a
spatial design needs only one cycle using four 4-bit PEs [73].

D. Outlier-aware Quantization

Outlier-aware quantization (OLAccel) [66] is tailored for
Gaussian (non-uniform) distribution, which is common in
DNN models. It divides the values in a tensor into two regions,
i.e., outliers and non-outlier (or normal) values. The outlier
with a low probability can be represented by high precision
(such as FP32 or FP16), and normal values with a high
probability can be compressed with fewer bits. GOBO [86]
is similar to OLAccel but has fewer outliers. However, they
exploit variable-length data encoding, which leads to the
non-alignment in the memory sub-system. As a result, these
kinds of design increase the hardware complexity and have
a non-negligible area overhead as we would show later.

III. MOTIVATION: ADAPTIVE DATA TYPE

In this section, we first analyze the distributions of
values in weight tensors and activation tensors from existing
DNN models. Prior works have proposed the accelerator
microarchitecture with adaptive bit length to achieve low-bit
quantization [66], [86], which requires a significant amount
of hardware resources to deal with the variable length. In
contrast, our work proposes the idea of adaptive numerical
data type (ANT) to fulfill the potential of low-bit quantization.
We present a qualitative framework to demonstrate the
advantage of ANT, which is extremely hardware-friendly.

A. Opportunities for Adaptive Type

We identify two opportunities: the inter-tensor adaptivity
to the specific distribution of each tensor and the intra-tensor
adaptivity to the importance of values in each tensor. These
two opportunities lay the foundation for constructing the
hardware-friendly adaptive quantization scheme.

We first analyze the diversity of value distributions for
various tensors in popular DNN models. Most previous works
focus on Gaussian-based distribution and propose different
techniques to mitigate the accuracy loss of quantization [52],

Compute

Off-chip Memory
On-chip
Memory

/

Decoder
(Overhead)

Controller
(Overhead)

D
ec

od
er

 (O
ve

rh
ea

d)

Aligned

Unaligned

4bit

4bit

4bit

8bit 4-bit
MAC

4bit

b:
a:

4bit

Figure 2: The qualitative framework for describing the
hardware overhead for leveraging DNN quantization.

[66], [86]. However, tensors in DNN models exhibit different
distributions as shown in Fig. 1. For example, the activation
tensor in the first layer of ResNet18 [41] is closer to a
uniform distribution, while an activation tensor in BERT [22]
has a long tail that is close to Laplace distribution [2], [4].

Inter-tensor Adaptivity Given the diverse distribution of
various tensors in DNN models, there naturally exists the
opportunity called inter-tensor adaptivity. Intuitively, inspired
by the non-uniform quantization of digital image process-
ing [45], if we adaptively choose the most suitable numerical
type to quantize a tensor according to its distribution, it may
achieve a lower quantization error, e.g., MSE (mean square
error). For instance, in the left part of Fig. 1, the four-bit
int type would lead to a smaller quantization error than
the four-bit float type for the uniform-like distribution
with a narrow range. In contrast, the PoT type, which can
represent a large dynamic range under the same bit length,
is more suitable than int and float for the Laplace-like
distribution with a long tail, as shown in the right part.

Intra-tensor Adaptivity Complementary to the inter-tensor
adaptivity, the opportunity to reduce the quantization error
also exists within a tensor. Specifically, extremely small and
large values in a tensor do not require a high precision.
First, the key premise of DNN model pruning is that [40],
[47] small close-to-zero values are less important so can
be pruned. Second, many quantization works have shown
that large values can be clipped to a threshold [15], which,
however, should be large enough. In other words, the exact
numerical value of extremely large values is unimportant too
as long as its rough numerical range is captured. To exploit
such an intra-tensor adaptivity opportunity, the quantization
scheme should allocate fewer precisions for very small and
large values while capturing a large enough range.

In the next part, we show that existing works cannot
exploit the aforementioned opportunities, leading to marginal
quantization benefits or significant hardware overheads.

B. Quantization Architecture Analysis

We first present a unified qualitative framework in Fig. 2
to analyze the hardware overhead introduced by previous

Architecture
Off / On-chip Mem. Compute Overhead

Aligned Bit Width Bit Width Area Ratio

Int X 8 8 0

AdaFloat [78] X 8 8 14.5%

BitFusion [73] X 7.07 7.07 ∼ 0

BiScaled [43] X 6.16 6.16 7.1%∗∗

OLAceel [66] 7 5.81 4.36 71%

GOBO∗ [86] 7 4.04 / 6.81 16 55%

ANT (Ours) X 4.23 4.23 0.2%

Table I: Quantization architecture comparison. We collect the
average bit of once memory access and computation precision
among 13 workloads, including CNN and Transformer, for
each quantization method. We also count the area ratio of
the decoder and controller. ∗GOBO only has the weight
quantization, where its statistics only involve weight tensor.
∗∗We only synthesize the BPE area of BiScaled.

quantization works. We consider the three main components
in the baseline DNN accelerator, which include the off-
chip memory, on-chip memory, and computation unit. For
example, Google’s TPU architecture [46] has the off-chip
HBM, large unified on-chip buffers, and weight-stationary-
based systolic array as the computation unit. On top of the
baseline architecture, a quantization scheme would generally
introduce three extra components, which are off-chip data
decoder, on-chip data decoder, and compute controller.

We analyze five state-of-the-art quantization schemes,
which are int, AdaptiveFloat [78], BitFusion [73], BiS-
caled [43], OLAccel [66], and GOBO [86]. Tbl. I compares
their area overhead and quantization benefits with the metrics
including averaged off-chip data width, averaged on-chip
data width, and averaged compute data width. For a fair
comparison, we collect the statistics from over ten models in-
cluding CNNs [41], [75], [77], ViT (vision transformer) [25],
and BERT [22]. We report numbers for all schemes when
all models are close to their original FP32 accuracy (CNN
with < 0.1% loss and Transformer with < 1% loss) except
BiScaled. We take the results from the BiScaled paper [43].
Sec. VII provides more experimental details.

The conventional int-based quantization stores tensors
with the same bit width in both off-chip and on-chip memory,
making them all access aligned. Thus, it does not require
any additional decoder logics and compute controller (i.e.,
its area overhead is zero). On the other hand, it does not
exploit the inter- and intra-tensor adaptivity. A low-bit int
can only represent a narrow range, which may clip away few
but important large values [15]. As such, it often requires
8-bit int type to retain original model’s accuracy. Hence its
quantization benefits are limited to 8 bit for off-chip memory,
on-chip memory, and computation resources.

AdaptiveFloat [78] (shorted as AdaFloat) extends the

float type with a tensor-wise exponent bias. It has aligned
off-chip and on-chip memory accesses but requires an
exponent bias decoder for controlling the bias offset, whose
area is 14.5% larger than the fixed-point (int). Although
floating-point allows AdaFloat to represent a greater value
range, it gradually increases quantization resolution as values’
magnitude decreases logarithmically, leading to excessively
high resolution (called rigid resolution [52]) for much smaller
values. Because smaller values are usually less important,
the rigid resolution wastes much numerical representation
space, rendering its overall quantization benefits to 8 bits.

BitFusion [73] exploits the inter-tensor adaptivity by
choosing different bit lengths (or precisions) for different
tensors. It incurs an almost zero hardware overhead because
the high precision data type (e.g., 8-bit int) can reuse all the
low-precision data type (e.g., 4-bit int) components without
extra overhead. However, its underlying primitive data type
is still int type, which limits its quantization benefits to
7.07 memory bits and computation bits on average.

OLAccel [66] and GOBO [86] leverage the outlier-aware
quantization scheme. They store a tensor using a variable-
length compressed form (e.g., 4 bits for normal values and
16 bits for outliers with relatively large values) in the off-
chip memory, which requires a dedicated data decoder. They
also require an additional outlier controller to orchestrate the
computation between normal values and outliers. Note that
GOBO [86] only supports weight quantization, it requires
high precision (i.e., 16-bit) floating-point computations for
activation tensors. Even though both designs have a large
quantization benefit with low memory bits, their associated
hardware complexity and overhead are also significant.

BiScaled [43] also adopts outlier-aware quantization but
with a fixed-length compressed form. However, it requires
an extra bit mask for indicating different scale factors, which
leads to a more considerable area overhead. Moreover, it only
considers two value ranges for the intra-tensor adaptivity,
leading to the benefits of 6.16 memory and computation bits.

To balance the hardware overhead and quantization ben-
efits, we propose the adaptive numerical data type (ANT)
framework that exploits both inter-tensor and intra-tensor
adaptivity. ANT further supports mixed-precision. As the last
row in Tbl. I shows, ANT achieves the lowest average bit
for memory and computation for both activation and weight
tensors with a negligible area overhead.

IV. ADAPTIVE NUMERIC DATA TYPE

In this section, we present our adaptive numeric data type
ANT that can exploit both the intra- and inter-tensor adaptive
opportunities in a hardware-friendly fashion. We first present
a novel primitive data type called flint that combines the
advantages of float and int for adapting to the importance
of different values within a tensor. We then propose a
general framework that adapts to each tensor’s distribution by

Gaussian Distribution

1

1

x

1

0 0

0

1

1

x 1

1

x

0

x

1

0

0

x

2

2,3 4,5
6,7

8,10
12,14

16
24 6432

3 4 5 6 7

x0

0

0

1

0

0

0

0

0

0

1

0

0 1

0 1

Int
Float
2-bit
Exp.

Float
3-bit Exp.

Pr
ob

ab
ili

ty

1

2

3

0
8 16 24 320

PoT

64

M
antissa Precision

Figure 3: The 4-bit unsigned flint type, with “x” as either
0 or 1. The exponent and mantissa bits are marked with
green and blue color, respectively.

selecting different primitive types, including int, float,
flint, and PoT. As a result, ANT has aligned memory
accesses and efficient low-bit computation, translating to
significant benefits with low hardware overheads.

A. Intra-tensor ANT: Flint

Main Idea As shown in Sec. III-A, extremely small and
large values in a tensor do not need high precision. A naive
approach is to divide a value range into multiple intervals
and assign fewer bits to intervals with small or large values.
However, this leads to variable-length for different elements
in the tensor and requires expensive hardware logic to handle
the incurred unaligned accesses as mentioned in Sec. III-B.

To provide a fixed-length data type overcome while
exploiting intra-tensor adaptivity, we propose a new primitive
data type called flint. Our main idea is to start with a fixed-
length, and allocate fewer mantissa bits (i.e., more exponent
bits) to extremely small and large values (as they do not
require a high precision) while allocating more mantissa bits
(i.e., fewer exponent bits) to middle-range values to preserve
their precision. Using more exponents bits for large values
also allows us to capture the range of very large values.

To mark the boundary between the exponent and mantissa
field, we use the first appearance of bit ‘1’ after the most
significant bit (or sign bit). We call this encoding first-one
encoding. While other strategies exist to split the exponent
and mantissa fields, this encoding has the critical advantage
of simplicity: the decoder for this encoding only requires a
simple leading zero detector as we would show later.

An Example We use the example of four-bit flint in
Fig. 3 to illustrate our design. Without loss of generality, we
assume the case of unsigned values that have been scaled
with the per-channel (or per-tensor) granularity for the weight
(activation) tensor as described in Sec. II-B.

Fig. 3 left shows a four-bit unsigned binary number using
our flint encoding, which can represent 16 distinctive
binary values with the maximum value of 64. We divide this
value range to eight intervals corresponding into the eight
columns in Fig. 3 left, and highlight the exponent fields in
green color. The first four intervals have the encoded exponent

Bits Exponent Value Fraction Value Value in Decimal

0000 - 0 0

0001 1−1 = 0 1 20×1 = 1

001x 2−1 = 1 1, 1.5 2, 3

01xx 3−1 = 2 1, 1.25, 1.5, 1.75 4, 5, 6, 7

11xx 4−1 = 3 1, 1.25, 1.5, 1.75 8, 10, 12, 14

101x 5−1 = 4 1, 1.5 16, 24

1001 6−1 = 5 1 32

1000 7−1 = 6 1 26×1 = 64

Table II: The value table of 4-bit unsigned flint with the
exponent bias of −1. The blue numbers are the first-one-
encoded exponent and “x” is mantissa with value of 0 or
1.

fields of 00002, 00012, 0012, and 012. Under the four-bit
fixed-length encoding, the number of mantissa bits for these
intervals are 0, 0, 1, and 2, respectively. This mantissa bit
allocation scheme is adaptive to the value importance as the
first two intervals are closer to zero and hence have the least
number of precisions. The exponent-mantissa bit allocation
for the last four intervals is inverse to the first four intervals.
In specific, the greatest interval 10002 has no mantissa bit,
which is also desirable because the range is more important
than the precision for large values.

Tbl. II shows the value table for the above 4-bit unsigned
flint with the exponent bias of −1. Each row refers to the
divided interval (i.e., column) in Fig. 3 left. The equivalent
exponent value for a given flint encoding is the interval
number plus the bias. The final decimal value equals the
fraction value multiplied by the exponent value raised by
the power of two as in Equation 1. For example, the flint
encoded number 11102 has the exponent value of 4−1 = 3
and mantissa bit 102, which corresponds to the fraction value
of 1.5. As such, its decimal value is 23×1.5 = 1210.

Essentially, our proposed flint is a mixture of int,
float (and its variants), and PoT at different intervals. The
first four intervals (i.e., rows) in Tbl. II have the binary
encoding of 00002, 00012, ..., 01112 and represent the
integer value of 0,1, . . . ,7, respectively. In other words, the
four-bit flint type is equivalent to int in the first four
intervals. The 5th and 6th intervals have the 2 and 1 mantissa
bits, making them equivalent to the float with 2 and
1 mantissa bits (i.e., 2 and 3 exponent bits), respectively.
The last two intervals have zero mantissa bits, which are
equivalent to the PoT type.

Given these above insights, we call the proposed type flint,
which is able to combine the advantages of float and int.
Note that in the right of Fig. 3, the divided eight intervals
can be coalesced into four intervals according to their type-
equivalence. We can see that the mantissa precision allocation
in flint highly matches the Gaussian distribution, meaning
values with a higher frequency also with more mantissa bits.

Algorithm 1: Element-wise flint encoding algo-
rithm.

Input: Element, e; Bit-width, b; Scale factor, s.
Output: Quantized Element, q.

1 def FlintQuant(e, b, s):
2 en = 2×b; // Exponent number.
3 e = IntQuantization(e, s, 0, 2en−2);
4 if e == 0 then
5 return 0;

6 else
7 i = blog2(e)c+1;
8 exp = GetExponent(b, i); // First-one

exponent.
9 mb = b− len(exp); // Mantissa bit.

10 m = Round[(e/2i−1−1)×2mb];
11 m = Binary(m);
12 q =Concat(exp,m);
13 return q;

As most tensors in DNN models are Gaussian-like, we show
later that this behavior leads to fewer quantization errors.

Flint Encoding Algorithm To recover the accuracy loss,
it is generally required to perform the fine-tuning with the
quantization in the training loop. As such, flint needs an
encoding algorithm to convert the original high precision
values, such as FP32, to the low precision flint. The
software can use this encoding algorithm to mimic the flint
behavior during fine-tuning. Meanwhile, as we target both
weight and activation quantization, the encoding needs to be
performed dynamically during inference, which requires a
lightweight and hardware-efficient encoding algorithm.

Algo. 1 details the hardware-efficient flint encoding
algorithm for each tensor element. First, a b-bit flint
number has 2× b possible first-one codes for exponents
(Line 2), so its value interval is [0,22b−2]. We first use int
quantization with the scale factor s to quantize the input
value e to its integer value with the value range [0,22b−2]
(Line 3). We then calculate its value interval index according
to the interval boundary in Tbl. II (Line 7), and derive the
exponent and mantissa filed correspondingly (Line 8 - 12).

For example, the 4-bit unsigned flint type has the value
range of [0,22×4−2 = 64] (Line 2). For a decimal number
1110, it has been quantized by the int quantization with the
scale factor s (Line 3). We then calculate its value interval
index i = 4 (Line 7), for which the encoded exponent is
112 (Line 8). After deriving the exponent field, we know its
mantissa bit-width is mb = 4− 2 = 2 (Line 9), with value
of m = (11/8− 1)× 22 = 1.510 and rounded to m = 210
(Line 10). This binary code of 210 is 102 (Line 11), which
is concatenated with exponent exp to get the final flint
encoded number q = 11102 (Line 12). Note that after the

Algorithm 2: ANT data type selection algorithm.
Input: Tensor, T ; Candidate list of numeric types, L.
Output: Quantization function, FQ.

1 def ANT(T , L):
2 minMSE = 109;
3 foreach l ∈ L do
4 F = GetQuantFunc(l); // Get the

quantization method of l.
5 m = ArgminMSE(T , F); // Search the

minimum MSE with range
clipping.

6 if m < minMSE then
7 FQ = F ;

8 return FQ

above quantization process, the original value 1110 is now
rounded to 1210 in flint representation.

The above flint encoding algorithm is an element-wise
function that can be implemented efficiently in both hardware
and software. The exponent and mantissa bit settings are
constants when the quantization bit-width is given. The
quantization of weight tensors can be done offline, while
activation quantization needs hardware support. Owing to the
simplicity of our encoding algorithm, we can implement it
in the hardware by augmenting the hardware’s element-wise
computation unit, such as the activation unit.

B. Inter-tensor ANT

To exploit the inter-tensor adaptivity and balance the
hardware complexity, we propose to select the data type
for a tensor according to its distribution. As we have shown
previously, flint is equivalent to int, float, and PoT
in certain value intervals. ANT is natural to support these
four primitive data types for inter-tensor adaptivity.

As previously shown in the right of Fig. 1 and Fig. 3, the
int is most suitable for the uniform-like distribution. The
float or PoT are most suitable for Laplace-like distribu-
tions. The flint data type is most suitable for Gaussian
distribution because flint has the highest resolution (most
mantissa bits) for the values with the highest frequency. In
our work, we propose an automatic algorithm to determine
the data type for tensors in a trained DNN model that we
describe later. Meanwhile, it is hardware-efficient to support
the above four data types. Even with different data types, a
tensor is stored in a fix-length format. As such, the memory
accesses of ANT are aligned and hence efficient.

C. ANT-based Quantization Framework

To apply ANT for quantizing DNN models, we first need to
select the specific type for a given tensor since ANT contains
multiple primitive data types. After that, we then perform

ANT
Conv/FC

Quantized
Weight ANT4

ANT4
Bias

Int16/
FP16

Add

Int16/
FP16

Activation
FuctionANT4

Int16/
FP16

Scale &
Quantize

Int16/
FP16

Fusion

Quantized
Input

Quantized
Output

Figure 4: ANT-based quantized inference.

the fine-tuning to recover the accuracy loss. We describe the
details in each step and explain how to use the ANT-quantized
model for inference in the end.

Type Selection Algo. 2 shows the type selection algorithm
for ANT, which chooses the primitive data type with minimum
mean squared error (MSE) out of the candidate list L (e.g.,
flint/int/float/PoT). We first get the quantization
function for each candidate type (Line 3-4). The flint
encoding algorithm is described previously in Sec. IV-A, and
the de-quantization algorithm can be derived by inverting the
process. We use the original quantization function for the
other primitive types. For a given data type, we also need to
determine its range (i.e., the scaling factor). We employ a
widely-used range clipping method [6], [17] that determines
the clipping range by minimizing the MSE (Line 5). We then
determine the most suitable data type for each tensor with
minimum MSE from the candidate list (Line 6-7).

We only execute the above type selection algorithm
once per tensor before fine-tuning. The reason is that the
distribution of tensors of a well-trained model remains
roughly similar even during the fine-tuning stage [2], which
has been exploited by many other quantization methods [52],
[66], [73]. For the weight tensor quantization, we do not
require any training samples and directly use the weight
tensors from the original, trained DNN models to determine
each weight tensor’s data type. For the activation tensor
quantization, we need about 100 training samples to collect
the statistical information for determining the types.

Mixed Precision ANT is also compatible with the mixed-
precision quantization method to achieve the same level of
accuracy as the original DNN model. We leverage a layer-
wise precision selection method [73]. In the beginning, we
use the 4-bit ANT type for all layers and perform fine-tuning.
We then collect and sort the MSE of all layers in descending
order. We enlarge the bit width of a layer with the greatest
MSE to 8 bits and then perform another fine-tuning. We
repeat the above process until the accuracy of the quantized
model is within the preset threshold of the original model.

ANT-based Inference Fig. 4 presents the ANT-based infer-
ence framework. For convolution and fully-connected layers,
we use the low-bit quantized weights and input activations
but keep the output activations the high precision. The reason

LZD

b2 b1 b0
b3

3

Left Shifter

+34

4

1 0

4

Exponent

Mantissa
4

+4

1

+1

Figure 5: The 4-bit unsigned float-based flint decoder.

is two-fold. First, the accumulation in these layers needs to
maintain a high precision [42]. Second, their following layers
are usually activation layers such as SoftMax and GeLU,
which also require high-precision numbers [87]. The output
tensors of activation layers can be quantized to low-bit values,
which can be completed in the hardware by augmenting the
activation units (or their equivalence).

V. TYPE-FUSION PROCESSING ELEMENT

The ANT data type introduces unique challenges for the
design of the processing element because the PE now needs to
handle different primitive types (flint/int/ float/PoT).
Moreover, the input activation tensor and weight tensor for
the same layer may have different data types. To address these
challenges, we propose the TypeFusion processing element
architecture that supports the multiply-accumulate (MAC)
operation between different primitive types. We describe the
two cases where we build TypeFusion PE on top of the
original float-based PE and int-based PE, respectively.
For convenience, we simplify the description below with the
focus on unsigned numbers and it is straightforward to adapt
the described design to support signed numbers.

A. Float-based PE

We first describe how to augment the original float-
based MAC unit to support int, PoT, and flint. As we
have described previously in Sec. IV-C, the accumulation
needs to be performed in high precision, which is sufficient
to cover the ranges of low-precision ANT. As such, we focus
on how to augment the multiplication component.

Multiplier For the int and PoT, we can regard them as
two special float formats. Int has no exponent and is
full of mantissa with the subnormal number. PoT has no
mantissa and is full of exponent bits with extreme dynamic
range. For each type, we need to identify its exponent bit-
length and mantissa bit-length and send them to exponent and
mantissa decoders, respectively. Therefore, we need a float
multiplier with an n-bit exponent and an n-bit mantissa for
n-bit int and PoT. Meanwhile, those exponent and mantissa
bits are sufficient for the n-bit flint, which is equivalent
to float, int, and PoT in different value intervals.

Decoder To decode int (PoT) to float, we can set the
exponent (mantissa) to zero and copy all bits to mantissa

(exponent). The decoding of flint is more complicated
because its decoding is value-dependent. Thus, we design an
efficient float-based flint decoder to address this issue.

The 4-bit float-based unsigned flint design is il-
lustrated in Fig. 5, and an arbitrary n-bit flint decoder
can be designed in a similar way. The decoder uses a
leading-zero detector (LZD) [65] and shifters, which are
well-known hardware components and both have lightweight
implementations. We use the following equations to extract
the exponent and mantissa field from flint type:

Exponent =
{

3−LZD(b2b1b0), b3 = 0
4+LZD(b2b1b0), b3 = 1 , (3)

Mantissa = b2b1b0 << (LZD(b2b1b0)+1) (4)

where the LZD is the leading zero number function and <<
represents left shift. We can decode flint to the original
exponent and mantissa. Finally, as shown in Tbl. II, the
float decoder will continue to transfer them to real values.
For example, a flint number 11102 is 1210. Its exponent
is 4+LZD(110)= 4. Its mantissa is 110<< (0+1)= 1002 =
0.510. Therefore, 11102 is 24−1×1.5 = 1210.

B. Integer-based PE

For DNN inference, it is more common to use int-based
PE which is simpler and more area efficient than float-
based PE. Because of the incompatibility between int and
float, we remove the latter from the ANT primitive data
types, which now include flint, int, and PoT. To support
ANT on the integer-based PE, we first introduce a unified
representation that is based on two int values and its
corresponding decoder design. We then present the light-
weight modification of the original int MAC to support
other primitive types in ANT such as flint and PoT.

Decoder For a given integer i, we decompose it to a base
integer bi and an exponent integer e, such that i = bi << e.
Tbl. III shows such a decomposition for 4-bit flint type.
When the most significant bit (MSB) of flint is 0, the
base integer value matches the value in int format and the
exponent is zero. When the most significant bit is 1, the base
integer value matches the value of remaining bits in int
format left-shifted by one, and the exponent can be derived
by using the leading-zero detection function/logic.

Binary Exponent Base Integer Integer Value

0xxx 0 0, 1, 2, ..., 7 0, 1, 2, ..., 7

11xx 0 8, 10, 12, 14 8, 10, 12, 14

101x 2 4, 6 4 << 2 = 16, 6 << 2 = 24

1001 4 2 2 << 4 = 32

1000 6 1 1 << 6 = 64

Table III: Int-based flint 4-bit value table. The blue
numbers are the first-one-encoded exponent and “x” is 0/1.

LZD

b2 b1 b0 b3
1 0

4 Exponent

Integer

x2 0

1

1

3

4 1

0
3 1

0 4

<< 1 4
0

1+1
Sign

Figure 6: The 4-bit int-based flint decoder.

The following equations describe the base integer and
exponent integer for a f lint number x = b3b2b1b0. Fig. 6
illustrates the corresponding decoder design.

Base Integer =

 b2b1b0 , b3 = 0
b2b1b0 << 1 , b3 = 1
1 , x = 10002

, (5)

Exponent =
{

0 , b3 = 0
2×LZD(b2b1b0) , b3 = 1 , (6)

This representation also works for int and PoT. The int
type has a zero exponent value, while the PoT type has the
base integer of one and the exponent value from its binary.

In summary, the flint type expands the value range if
int type by using a simple left shifter instead of the compli-
cated hardware logics in float type. It can be decoded to
two integer numbers instead of a fraction number. Combined
with a proper scale factor, the flint can be coupled with
int quantization without extra overhead. The decoder for
flint with an arbitrary bit-width can be generated in a
similar way. The sign bit can be easily combined with the
decoded numbers to fit the int multiplication.

Multiplier and Accumulator The decoded flint is
not directly compatible with the original int-based MAC
because of the extra exponent and shift operations. Therefore,
we need an adder and shifter for flint computation shown
in Fig. 7. Assume we have two flint numbers, fa and
fb, with exponent ea and eb and base integer ia and ib,
respectively. The integer multiplication is the same as original
int, including the sign bit, i.e., ic = ia× ib. The exponent
need an add operation ec = ea + eb. Then, we get the final
result id = ic << ec, which can be represented by a 16-bit
int number. As we have explained in Sec. IV-C, low-bit int
MAC usually adopts a high precision accumulator to achieve
the precise accumulation results [42], [64]. The flint type
produces a 16-bit int result and is compatible with the
original 16-bit accumulator with i f = ie + id .

C. Signed Number Support

The flint decoder function and hardware design are
generally extensible for arbitrary bit-width with specific
constant settings. In particular, we show that the signed

IF Decoder IF Decoder

4-bit Adder4-bit Multiplier

fafa fbfb

iaia ebebibibeaea

Left Shifter <<
icic ecec

ieie

16
-b

it
A

cc
um

ul
at

or

idid

ifif

Figure 7: The 4-bit int-based flint MAC unit. “IF
Decoder” is the int-based flint decoder.

number decoder can reuse most of the components in the
unsigned number decoder without affecting its critical path.

For example, assume that we have a 4-bit signed flint
number. The most significant bit b3 is the sign, and the last
three bits are b2b1b0. For int-based flint, the following
equations are the base integer and exponent decoder for 3-bit
flint. Obviously, we can easily reuse the 4-bit unsigned
flint decoder function shown in Equation (5) and (6).

Base Integer =

 b1b0 , b2 = 0
b1b0 << 1 , b2 = 1
1 , x = 1002

, (7)

Exponent =
{

0 , b2 = 0
2×LZD(b1b0) , b2 = 1 , (8)

To maintain the compatibility with the signed integer
MAC unit, we need to convert the base integer to its
two’s complement form as shown in Fig. 6. However, this
conversion process does not affect the critical path of the
unsigned flint decoder as the critical path still lies in the
leading zero detector unit. For the float-based flint, we
can attach the sign bit to the decoded exponent and mantissa
based on the original unsigned float-based decoder.

D. Mixed-precision Support

In this work, we propose to couple our ANT with the mixed-
precision quantization to achieve the same accuracy of the
original high-precision DNN models. According to many
prior works [6], [57], [81], [95], the 8-bit int is sufficient
to maintain the original model accuracy. We explain how our
4-bit ANT PE design can naturally support 8-bit int PE.

Fig. 8 shows how to use four 4-bit ANT PEs to multiply
two 8-bit int numbers. First, we decode the two 8-bit
numbers < a,b > and < c,d > to four numbers in our base
integer and exponent representation, which are < a,4 >,
< b,0 >, < c,4 >, and < d,0 >. Then, we perform four
parallel multiplication for those four numbers, as illustrated
in Fig. 8, each using a 4-bit ANT PE. Finally, we sum the
results of four multiplication using an extra adder tree. In
summary, our ANT PE is a good fit for supporting the mixed-
precision DNN inference. In the later evaluation, we show

b

4-bit
PE

a b d

a 4 c 4 d 00

++
Acc.

4-bit
PE

4-bit
PE

4-bit
PE

c
8-bit int

 Base Int.

8-bit int

Exp.

4-bit 4-bit

Figure 8: The 8-bit int MAC implementation via four 4-bit
ANT MACs, which reuses most components except the adder.

that most tensors (up to 91%) would use 4-bit ANT while
only a fraction of tensors would use 8-bit int.

VI. ARCHITECTURE INTEGRATION

In this section, we describe how to integrate the aforemen-
tioned ANT processing element into existing DNN accelerator
architectures such as systolic array and tensor core [64].
We present our optimizations to minimize the overhead of
using ANT’s TypeFusion PE. In the end, we describe the
convenience of extending the instruction set for our design.

A. ANT and Dataflow Co-design

We first describe the architectural optimizations for ap-
plying ANT to the systolic array, which is also adopted by
commercial DNN accelerators like Google’s TPU [46]. As
we have explained in Sec. IV-C, our design follows the
common practice in which the input and weight tensor have
low-bit quantization while the output tensor has high-bit
quantization. As such, we find that our design achieves the
best benefits on the systolic array with the output-stationary
dataflow [73]. Our evaluation results show that the weight-
stationary systolic has close benefits as well. Fig. 9 depicts
an output stationary systolic array with ANT decoders.

Decoder Placement We place ANT decoders between the
on-chip memory buffer and systolic array. This means that
quantized tensors are stored with low-bit precision in both
off-chip and on-chip buffers. Meanwhile, there is no special
hardware requirement for off-chip memory accesses because
ANT numbers are decoded before they enter the systolic
array. This design decision improves both the performance
and energy efficiency because BERT-like models are bounded
by the off-chip memory bandwidth [80] while CNN models
spend the most energy on on-chip buffer accesses [13].

As Fig. 9 shows, only the boundary PEs in the systolic
array access the on-chip buffer. As such, we only place the
decoders along the boundary to mitigate the area overhead.
For the output-stationary systolic array, the input and weight
elements are sent to the PE (process element) array from the

…

…

…

…

…

Input

W
ei

gh
t

 Base Int. Exp.

××
++Ex

p.
B

as
e

In
t.

<< ++
Acc.

Accumulator
Preload (16bit)

Input decoder Weight decoder
PE

…

Reused component
To right PE

To
 b

ot
to

m
 P

E

Figure 9: Architectural optimizations for integrating ANT
data type to the output-stationary systolic array.

top and left, respectively. Assuming the array size of n×n,
we only need 2n instead of n2 decoders, which amortizes the
hardware area overhead of our design. The weight-stationary
systolic array only needs n decoders for the input tensor as
the output tensor is stored with high precision.

PE Connection To use ANT PEs in the systolic array, we
need extra wires connecting neighbouring PEs. The reason is
that after decoding, an n-bit ANT type has two n-bit binary
numbers. For example, a float-based ANT type has an
n-bit exponent number and an n-bit mantissa number, while
an int-based ANT type has an n-bit exponent number and
an n-bit base integer number. However, our evaluation results
show that the extra overhead for those wires is negligible
due to the extremely short distance between PEs.

Component Reuse The 4-bit int-based ANT MAC unit
uses a 4-bit adder and shifter for adding exponent values
and shifting the multiplier result, respectively. Those extra
hardware overheads can be mitigated in the mixed-precision
design. As we have explained in Sec. V-D, the 8-bit int
MAC requires four 4-bit ANT PE and a 16-bit adder. In
the 8-bit mode, the n×n systolic array with 4-bit ANT PEs
would transform to n/2×n/2 systolic array with 8-bit int
PEs. In this sense, we claim that ANT does not introduce
new components for the PE of the mixed-precision systolic
array, except for decoders outside the systolic array.

Weight Stationary Similar to output stationary, we move the
input decoder to the top instead of the inner PE, as shown in
Fig. 9. Because weight elements are preloaded to the PEs, the
weight can be decoded before the preloading. Therefore, the
weight decoders only need to decode and store the decoded
exponent and integer within each PE. Other optimizations
for output stationary can also be used similarly as well.

Tensor Core Tensor core already supports mixed precision.
For example, the A100 GPU with Ampere architecture [64]
provides 624 and 1248 TOPS (tera operations per second)
for 8-bit int and 4-bit int, respectively. Meanwhile, the
accumulator width for those MAC units is 32-bit int. As

such, the existing tensor core can easily adopt the ANT type
by augmenting its MAC units and adding decoders for the
two multiplication operands. Moreover, the tensor core-based
ANT has aligned memory accesses and does not require any
modification of GPUs’ memory hierarchy.

B. Instruction Set Extension

The ANT framework introduces new data types for the
multiply-accumulate instructions. For int-based ANT, we
have two new data types, i.e., PoT and flint. They have
the fixed bit-width so that the original load/store instructions
are still applicable and hence remain unchanged. Thus, there
is no modification for the memory sub-system.

Obviously, ANT does also not break the original program-
ming model for convolutional (CONV) and fully connected
(FC) layers. The specific type for each CONV and FC layer
are determined after the quantization, and we can replace the
original int-based version with flint or PoT to generate
the corresponding codes. Thus, our ANT framework has a
broad applicability owing to its ease of integration.

VII. EVALUATION

We evaluate ANT in the aspect of model accuracy, perfor-
mance, area overhead, and energy efficiency in this section.

A. Methodology

Baselines We implement the ANT quantization framework
in PyTorch [67]. We evaluate four baselines compared against
ANT, including BitFusion [73], OLAccel [66], BiScaled [43],
AdaFloat [78], and GOBO [86]. BitFusion [73] uses the
mixed-precision of 4-bit and 8-bit int types. BiScaled [43]
quantizes the tensors with two scale factors to address
different ranges. We take the accuracy results from BiS-
caled paper and only synthesize the 6-bit BiScaled BPE.
AdaFloat [78] requires an 8-bit float to maintain the
original model accuracy. OLAccel and GOBO are both
outlier-aware quantization. We extend OLAccel [66] to
the Transformer-based models with weight & activation
quantization. Note that according to the original paper, the
first and last layer require 8-bit instead of 4-bit for normal

Type CNN Transformer

Model
VGG16 Res.18 / 50 Incep.V3 ViT BERT

[41] [41] [77] [25] [22]

Dataset
ImageNet GLUE

[21] [79]

Acc. (%) 73.48 69.59 / 75.97 77.34 80.99
84.42

(MNLI)

Table IV: Details of evaluated model and dataset.

values. GOBO [86] only quantizes weights, so we only
compare ANT against it in the metrics of area and accuracy.

Benchmark We use both CNN and Transformer-based
models, including computer vision and natural language
processing tasks listed in Tbl. IV. We exploit the SOTA
checkpoint from PyTorch official repository [67]. We report
the top-1 accuracies with FP32 in Tbl. IV. The evaluated
CNN models with the ImageNet dataset [21] include VGG-
16 [75], ResNet-18 [41], ResNet-50 [41], and Inception-
V3 [77]. For Transformer-based models, we evaluate BERT-
Base [22] with eight datasets of the GLUE dataset suite [79].
Owing to the space limitation, we only present the results
on three datasets (MNLI, CoLA, and SST-2), while the other
datasets have similar results. We also evaluate ViT (vision
transformer) [25], which is a recent Transformer-based model
and has achieved excellent results for vision tasks.

Fine-tuning Our ANT along with other baselines except
BiScaled [43] are compatible with quantization-aware training
for better accuracies. To conduct a fair comparison, we strictly
set the same hyper-parameters, including number of fine-
tuning epochs and learning rate, for all types. All variables
use 32-bit floating-point (FP32) arithmetic operations to
simulate quantization effects [42]. We generate and inject
trainable weights and activation quantization parameters into
the computation graph to fine-tune the quantized weights
and activations. To optimize the clipping ranges (i.e., scale
factors in Equation (2)), we also employ the straight-through
estimator (STE) [3] method in the backward propagation
based on the quantization framework PACT [15], [52].

Accelerator Implementation We implement the ANT de-
coder and PE described in Sec. V with the Verilog RTL. We
use Synopsys Design Compiler [50] to synthesize those com-
ponents with the 28 nm TSMC process, which reports area
and static/dynamic power estimation. We use CACTI [59] to
estimate the area, latency, and power of memory structures.
For the end-to-end performance evaluation of ANT and other
baselines, we develop a cycle-accurate simulator based on
the DnnWeaver [72]. We use DeepScaleTool [71] to scale all
designs to the 28 nm process for the iso-area comparison.

B. Quantization Accuracy
Since ANT uses multiple primitive data types

(flint/int/float/PoT), we first study the contribution
of each primitive for improving the quantization accuracy.

Primitive Combination We study six combinations of the
four primitive data types. Int is the combination with
only a single data type. Two combinations int-PoT (IP)
and float-int-PoT (FIP) excludes flint and hence
only exploit the inter-tensor adaptivity. Correspondingly,
we evaluate these two combinations that add flint and
exploit the intra- and inter-tensor adaptivity. They are int-
PoT-flint (IP-F) and float-int-PoT-flint (FIP-F).
ANT4-8 uses the mixed-precision of 4-bit int-based ANT

0.40

0.60

0.80

1.00

VGG16 Res.18 Res.50 Incep.V3 ViT MNLI CoLA SST2

N
or
m
al
iz
ed
M
SE

Int-4bit IP-4bit FIP-4bit IP-F-4bit FIP-F-4bit

Figure 10: The quantization MSE with the combination of
four different primitive types, all of which use 4-bit.

(i.e., IP-F) and 8-bit int for accuracy comparison. All types
use 4-bit quantization except ANT4-8. For the quantization
metrics, we use the MSE and model accuracy loss against the
original FP32 model. Fig. 10 plots the quantization MSE of
these combinations on eight DNN models. Fig. 11 and Fig. 12
demonstrate their accuracy loss compared to original high-
precision models before and after fine-tuning, respectively.

Quantization MSE For quantizing each tensor in DNN
models, we employ the ANT algorithm described in in
Sec. IV-C to choose the primitive data type with minimum
MSE. From the results in Fig. 10, we find that adding more
primitive data types generally lets us decrease the accuracy
loss owing to quantization errors. In specific, adding the PoT
type is critical for Transformer-based models on NLP datasets
(MNLI, CoLA, and SST2), since they have large activation
values. The benefit of the PoT type is smaller for the vision
tasks including ViT. Adding the flint type is important for
both vision and NLP tasks. Finally, we observe that adding
the float has the least impact on the quantization errors,
whose role is replaced by other primitive types.

Accuracy Comparing Fig. 10, Fig. 11, and Fig. 12, we
find that the model accuracy loss correlates well with the
quantization MSE, and the fine-tuning plays an essential
role in recovering the accuracy to the original values
before quantization. The 4-bit IP-F and FIP-F provide more
numerical types for selection, and both achieve the minimum
accuracy loss. The former only requires the int-based PE
while the latter requires the float-based PE. We show
later that the float-based PE for ANT consumes almost
3× area of int-based PE. As such, we choose the IP-F

Model ANT BiScaled Source

AlexNet [49] 55.85% 54.90% 56.56%

VGG16 72.80% 66.56% 73.48%

ResNet50 75.08% 70.46% 75.97%

ResNet152 77.30% 73.41% 78.25%

Table V: Accuracy comparison between ANT and BiScaled
without fine-tuning under 6-bit quantization.

0

10

20

30

40

50

VGG16 Res.18 Res.50 Incep.V3 ViT MNLI CoLA SST2

A
cc
ur
ac
y
Lo
ss

Int-4bit IP-4bit FIP-4bit IP-F-4bit FIP-F-4bit

Figure 11: The accuracy loss without fine-tuning.

-0.5

1.5

3.5

5.5

7.5

VGG16 Res.18 Res.50 Incep.V3 ViT MNLI CoLA SST2

A
cc
ur
ac
y
Lo
ss

Int-4bit IP-4bit FIP-4bit IP-F-4bit FIP-F-4bit ANT4-8

Figure 12: The accuracy loss with fine-tuning.

configuration (i.e., int-PoT-flint) as the final ANT for
the rest of evaluation. Note that the 4-bit ANT type is still
not able to maintain the original model accuracy, which
justifies the choice of mixed-precision in our work. The
mixed-precision ANT4-8 type can achieve original model
accuracy in CNN models and less than 1% accuracy loss for
ViT and BERT. We also observe that our proposed flint
data type is important for the accuracies of both vision and
NLP tasks. Meanwhile, the PoT type is more important for
Transformer-based models on NLP tasks than vision tasks.

Comparison against BiScaled We first compare the accu-
racy of IP-F configuration (i.e., int-PoT-flint) of ANT
against the BiScaled [73] without fine-tuning. Tbl. V shows
the 6-bit quantization without fine-tuning results for ANT and
BiScaled. We find that ANT offers much better accuracy than
BiScaled because ANT can exploit inter-tensor adaptivity and
intra-tensor adaptivity with more exponent domains.

Comparison against GOBO We compare the accuracy
of ANT against the prior outlier-aware quantization work
GOBO [86]. Unlike ANT that performs both weight and
activation quantization, GOBO only performs weight quanti-
zation. For a fair comparison, Tbl. VI shows that the weight-
only quantization using ANT achieves a similar accuracy,
while ANT’s fixed-length feature is more hardware-friendly
than the GOBO’s variable-length encoding scheme.

Bit Width ANT GOBO Source

3-bit 83.86% 83.76% (3.04 bit)
84.42%

4-bit 84.39% 84.45% (4.04 bit)

Table VI: Accuracy comparison between weight-only quanti-
zation using ANT and GOBO for BERT on MNLI dataset.

0.3
0.4

0.76
0.58
0.48

0
0.2
0.4
0.6
0.8
1

A
N
T
-O
S

A
N
T
-W
S

B
it
Fu
si
on

O
L
A
cc
el

B
iS
ca
le
d

A
da
F
lo
at

A
N
T
-O
S

A
N
T
-W
S

B
it
Fu
si
on

O
L
A
cc
el

A
da
F
lo
at

A
N
T
-O
S

A
N
T
-W
S

B
it
Fu
si
on

O
L
A
cc
el

B
iS
ca
le
d

A
da
F
lo
at

A
N
T
-O
S

A
N
T
-W
S

B
it
Fu
si
on

O
L
A
cc
el

A
da
F
lo
at

A
N
T
-O
S

A
N
T
-W
S

B
it
Fu
si
on

O
L
A
cc
el

A
da
F
lo
at

A
N
T
-O
S

A
N
T
-W
S

B
it
Fu
si
on

O
L
A
cc
el

A
da
F
lo
at

A
N
T
-O
S

A
N
T
-W
S

B
it
Fu
si
on

O
L
A
cc
el

A
da
F
lo
at

A
N
T
-O
S

A
N
T
-W
S

B
it
Fu
si
on

O
L
A
cc
el

A
da
F
lo
at

A
N
T
-O
S

A
N
T
-W
S

B
it
Fu
si
on

O
L
A
cc
el

B
iS
ca
le
d

A
da
F
lo
at

VGG16 ResNet18 ResNet50 InceptionV3 ViT BERT-MNLI BERT-CoLA BERT-SST-2 Geomean

N
or
m
.E
ne
rg
y

0.25
0.25

0.7
0.81

0.37

0
0.2
0.4
0.6
0.8
1

N
or
m
.C
yc
le

0%

25%

50%

75%

100%
Ty
pe
Ra
tio

Static DRAM Buffer Core

ANT-OS ANT-WS BitFusion OLAccel AdaFloat

Int4
PoT
Flint

Int8
FxP6

BiScaled

Figure 13: Comparison of the tensor type ratios (top), normalized latency (middle), and energy in different designs (bottom).

C. Area

According to our evaluation, the float-based PE has
about 3× area of int-based PE. Given their similar accura-
cies, we choose to use the int-based decoder and PE for
ANT accelerator. We compare the accelerator area breakdown
in Tbl. VII. Overall, the int-decoder overhead is about 0.2%
for the systolic array. In the rest of evaluation, we scale other
accelerators to 28 nm and perform an iso-area comparison.
All accelerators have the same on-chip buffer configuration.

D. Performance and Energy

We implement ANT with output-stationary (ANT-OS) and
weight-stationary (ANT-WS). We adjust the mixed-precision
ratio to make all models close to their original accuracy
(CNN with < 0.1% loss and Transformer with < 1% loss)
for the iso-accuracy and iso-area comparison except BiScaled.
We only compare BiScaled on VGG16 and ResNet50, which

have unignorable (> 5%) accuracy loss, as shown in Tbl. V.
Since AdaFloat [78] does not support mixed-precision, we

Architecture
Core

Buffer
Component Number Area (mm2)

ANT
Decoder (4.9µm2) 128

0.327
4-bit PE (79.57µm2) 4096

BitFusion 4-bit PE 4096 0.326 512 KB

OLAccel8 4-bit & 8-bit PE 1152 0.320 4.2 mm2

BiScaled 6-bit BPE 2560 0.328

AdaFloat 8-bit PE 896 0.327

Table VII: The configuration and area breakdown of ANT
and other baselines under 28 nm process.

only conduct 8-bit quantization based on AdaFloat. Fig. 13
compares ANT design against various baselines with the
metrics including the ratio of tensor types, normalized latency,
and energy. The batch size is 64 for all experiments.

Tensor Type Ratio The top plot of Fig. 13 compares the
ratio of 4-bit (flint, PoT, and int) and 8-bit (int)
tensors in different designs. ANT-OS and ANT-WS use the
same quantization algorithm but different microarchitectures,
so that they have the same ratio of various data types. By
inspecting the tensor ratio, we find that CNN models and
vision transformer model ViT choose to use a significant
portion of 4-bit flint type, while NLP Transformer models
use a roughly same portion of 4-bit flint and PoT type.

Compared to the prior mixed-precision work BitFu-
sion [73], ANT has a much greater ratio of 4-bit tensors
because its inter-tensor and intra-tensor adaptivity make the
4-bit ANT achieve much lower quantization errors. Especially
for BERT on SST-2, ANT can get the original accuracy with
100% 4-bit quantization. OLAccel [66] is not tensor-wise
quantization as it uses variable-length encoding for different
values within a tensor. We show its element-wise ratio of
4-bit and 8-bit values in the plot. Owing to its fine-grained
element-wise quantization, it has a slightly higher proportion
of 4-bit values than ANT, but also incurs a much greater
hardware overhead with low end-to-end latency.

Performance The middle plot of Fig. 13 compares the
normalized execution time of different designs, which shows
that ANT achieves the best latency performance. We also find
that ANT-OS and ANT-WS have very similar performances
because their architectural differences can be mitigated
through tiling optimizations [73]. BitFusion has more 8-bit

Figure 14: Numerical type (4-bit) mean square error (MSE)
results that are normalized to flint.

tensors, which lead to its worse performance. Even though
OLAccel has a higher proportion of 4-bit tensors, it needs
the additional outlier controller with significant overhead
to orchestrate the computation among normal values and
outliers. In the end, ANT achieves averaged 2.8×, 3.24×,
1.48×, and 4× speedup over BitFusion [73], OLAccel [66],
BiScaled [73], and AdaFloat [78], respectively.

Energy The bottom plot of Fig. 13 compares the normalized
energy consumption of different designs, which includes
the static energy and dynamic energy (DRAM, on-chip
buffer, and core). ANT-OS and ANT-WS have the lowest and
second-lowest energy, respectively. Even though ANT-WS
has a similar performance to ANT-OS, ANT-WS needs more
buffer accesses for the high-precision output activation. Thus,
ANT-WS spends more energy on accessing on-chip buffers.
OLAccel consumes less energy than BitFusion because it has
more 4-bit values, which reduces the energy of DRAM and
on-chip buffer. In the end, ANT-OS achieves averaged 2.53×,
1.93×, 1.6×, and 3.33× energy reduction over BitFusion,
OLAccel, BiScaled, and AdaFloat, respectively.

E. ANT Type Selection Analysis

In this subsection, we study the effectiveness of the data
type selection algorithm in ANT, as previously described in
Sec. IV-C. Specifically, we present the MSE for all weight and
activation tensors in DNN models with diverse distributions.

We collect weight and activation tensors from ResNet-18
(CNN model) on ImageNet and BERT-Base (Transformer
model) on MNLI dataset. Fig. 14 shows the MSE values

of different 4-bit data types that are all normalized to
flint. We adopt the unsigned numerical type for ResNet-
18 activation tensors because of the ReLU function, which is
a common practice for CNN quantizations [52], [66], [73],
[78]. We use signed types for ResNet-18 weight tensors
and all tensors of BERT. Fig. 14 shows that ANT always
chooses the most appropriate data type, i.e., the type with
the minimum MSE. Note that signed 4-bit float and PoT
are identical so that they overlap in ResNet-18 weight MSE
and BERT-Base weight and activation MSE.

We also justify the choice of data types by inspecting
the distribution of different tensors. Recall that in Sec. II-A,
it is natural to choose a numeric type whose quantization
resolution distribution is similar to the tensor distribution
to reduce the quantization error. For CNN models, int
has pretty low MSEs with the first convolutional layer. Our
manual inspection shows that the first layer is more like a
uniform distribution than Gaussian. This is especially so for
the activation tensor, which is the original image and not the
featured map. After the first layer, tensors in CNN models
are closer to Gaussian distribution so that flint almost
dominates these layers with very low MSE values.

For BERT, we only collect the former two Transformer
blocks as the representative, which have a similar trend to
the rest Transformer blocks. BERT model has relatively more
complex tensor distributions. The weight tensors show both
uniform-like and Gaussian-like distributions so both int
and flint are chosen. On the other hand, activation tensors
have significant outliers so that they prefer PoT or float.

VIII. RELATED WORK

This section presents related work on DNN acceleration,
sparse accelerators, and low-bit quantization accelerators.

DNN Acceleration To accelerate the DNN models effi-
ciently, researchers proposed both various hardware and
software solutions. For hardware acceleration, the proposed
architectures are tailored to fit the computation characteristics
of DNN models which leverage the regular access pattern,
high data reuse and tremendous parallelism to save the area
and latency from control logic [12], [14], [27], [28], [30],
[36], [37], [51], [68], [69], [88], [97]. In these hardware accel-
erators, weight or weight data flow through multiple stages to
maximize reuse, with example like systolic array [26], [46]
and other spatial architectures [13], [62], [85], [91]. Modern
GPUs have already deployed SIMD-friendly matrix-matrix
multiplication (GEMM) accelerator like tensor core [64].

For software acceleration, the efforts are mainly put into
the compilation and scheduling optimizations. To fully utilize
the hardware resources, various automated compilers or graph
optimizers are proposed to find optimal implementations on
different hardware [11], [44], [92], [93], [98]. Researchers
proposed various scheduling techniques [9], [10], [16], [19],

[20], [54], [55], [56], [84] to manage resource usage, task
queuing, runtime batching, and so on.

Sparse DNN Accelerators Given the increasing computa-
tion demand of DNN models, it is of paramount importance to
leverage the algorithm and hardware co-design. Researchers
have proposed pruning and quantization methods to exploit
the redundancy property of DNNs for such a purpose. Pruning
means removing part of the weight, input, or even output of
DNN layers, which leads to a sparse model with a portion
of model size. However, sparse models contain irregular
memory accesses, which could negate the benefits of sparsity.
To overcome this challenge, it is important to design sparsity-
optimized algorithms and hardware architectures [1], [31],
[32], [33], [34], [39], [69], [70], [82], [90], [96], [99].

Quantization Accelerators The DNN model quantization
exploits the insight that DNN inference does not need
high-precision representations like FP32, and is orthogonal
to model pruning. It uses a narrow bit width to reduce
memory and computation requirement. The fixed-length value
encoding is convenient for architectural integration because
it only requires processing element design, such as FP16,
INT8, or even INT4 [46], [64], [66], [73], [76], [86], and
BF16 [46], TF32 [64], and Posit [38]. Posit is a general data
type and a potential replacement for IEEE 754 [48]. It uses
variable length encoding for the regime bits to extend the
exponent range. Our proposed flint is different from Posit
in the aspect that flint has no regime bit and an efficient
encoding/decoding process based on float or int type.

BitFusion [73] and DRQ [76] can support different bit-
width via a spatial and temporal combination of low-bit
PEs, respectively. There are also outlier-aware quantization
accelerator designs, such as OLAccel [66], DRQ [76], and
GOBO [86], which are more aggressive and require heavy
architectural modifications. Moreover, these outlier-aware
quantization accelerators have unaligned computation and
memory accesses, resulting in their limited benefits. In
contrast, our work provides the adaptive numerical data type,
which provides low-bit fixed-length value presentations and
hence is also easy for architectural integration.

Quantization Methods In our work, we use two popu-
lar quantization methods, i.e., quantization-aware training
(QAT) [37], [42], [83], [100] and post-training quantization
(PTQ) [35], [37], [42], [83], [100]. The QAT requires fine-
tuning to restore the model accuracy, while the latter leverages
heuristics such as constraint optimization to avoid fine-tuning.

IX. CONCLUSION

In this work, we present a novel, composite data type
called ANT to achieve low-bit quantization for accelerating
DNN models. The key insight is adapting the data type
to value importance within a tensor and different tensors’
value distributions. For the intra-tensor adaptivity, we propose

flint, a new data type that combines the advantages of
int (maintaining a high precision for important value ranges)
and float (maintaining a large value range). For the inter-
tensor adaptivity, we propose the composite ANT type, which
selects a data type (e.g., int/flint/PoT) for each tensor
according to its distribution. We design a unified processing
element architecture for ANT and show its ease of integration
to existing DNN accelerators. Our design demonstrates 2.8×
latency reduction and 2.5× energy improvement over the
state-of-the-art quantization accelerators.

ACKNOWLEDGMENT

This work was supported by the National Key R&D
Program of China under Grant 2021ZD0110104, the Na-
tional Natural Science Foundation of China (NSFC) grant
(U21B2017, 62072297, and 61832006). The authors would
like to thank the anonymous reviewers for their constructive
feedback for improving the work. We also thank Tailong
Wangliu, Weiming Hu, and Yuxian Qiu for their technical
supports and beneficial discussions.

APPENDIX

A. Abstract

Our experiments have two major parts: the evaluation
of DNN model accuracy and the performance of the ANT
simulator.

We evaluate the results with models in image classification
and NLP. The image classification tasks include five models,
i.e., VGG16, ResNet18, ResNet50, Inception-V3, and ViT.
We adopt the BERT model for the NLP task with three
datasets, MNLI, CoLA, and SST-2. We provide the fine-
tuning source code for all models to measure the accuracy.
However, that may need dozens of hours to complete the fine-
tuning process. Therefore, we provide the checkpoints for
the fast evaluation of image classification models, which
can finish in one hour. For measuring the performance,
we evaluate all models with six simulator configurations.
In all experiments, we run those models according to the
experiment setup on a Ubuntu server that equips an NVIDIA
A100 GPU and multiple servers with four NVIDIA A10
GPUs for distributed fine-tuning.

B. Artifact check-list (meta-information)
• Compilation: NVCC 11.3, GCC 7.5.0.
• Model: VGG-16, ResNet-18, ResNet-50, Inception-V3, ViT,

and BERT-Base.
• Data set: ImageNet, and GLUE dataset.
• Run-time environment: Ubuntu 18.04.5 LTS, CUDA 11.3,

and PyTorch 1.11.
• Hardware: A server with an x86 processor, an NVIDIA A100

GPU, and a server with four NVIDIA A10 GPUs.
• Output: Model accuracy, simulator energy, and performance.
• How much disk space required (approximately)?: 20GB.
• How much time is needed to prepare workflow (ap-

proximately)?: It takes about 30 minutes to prepare the
environment.

• How much time is needed to complete experiments (ap-
proximately)?: It takes approximately 50 hours to execute
all experiments using the server equipped with GPUs. The
fast evaluation can take only one hour with the checkpoints.

• Publicly available: Our framework is publicly available on
GitHub https://github.com/clevercool/ANT Micro22.

• Code licenses: Apache-2.0 license.
• Data licenses: The datasets are publicly available through

their original licensing terms.
• Archived: https://doi.org/10.5281/zenodo.7002114.

C. Description

1) How to access: We archive the source code at https://
doi.org/10.5281/zenodo.7002114. We recommend you access
our GitHub repository: https://github.com/clevercool/ANT
Micro22 for the latest version.

2) Hardware dependencies: We fine-tune the DNN models
with two types of server configuration: A server is equipped
with a single NVIDIA A100 (40GB) GPU, and a server
is equipped with four NVIDIA A10 (24GB) GPUs for
distributed fine-tuning.

3) Software dependencies: The experiments rely on the
following software components.
• Ubuntu 18.04.5 LTS
• Python 3.8
• PyTorch 1.11
• Andconda 4.10.1
• GCC 7.5.0
• CUDA 11.3
• Cacti 7.0
4) Data sets and models: The evaluated image classifica-

tion models with the ImageNet dataset [21] include VGG-
16 [75], ResNet-18 [41], ResNet-50 [41], Inception-V3 [77],
and ViT (vision transformer) [25]. For NLP models, we
evaluate BERT-Base [22] with the GLUE dataset suite [79].
Owing to the space limitation, we only present the results
on three datasets (MNLI, CoLA, and SST-2).

D. Installation

We have well-documented README files to detail the
installation instruction for each experiment at https://github.
com/clevercool/ANT Micro22.

E. Evaluation and expected results

Our experiments have two major parts: the evaluation
of DNN model accuracy and the performance of the ANT
simulator.
• The directory ant_quantization contains the ANT

framework based on PyTorch for the DNN model
accuracy evaluation.

• The directory ant_simulator contains the perfor-
mance and energy evaluation of the ANT simulator.

To evaluate the experiments, you can utilize the scripts
in each directory according to the README files. We
also release all expected results in the README files for
Figure 12, Figure 13, and Table V.

F. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-
review-badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E.
Jerger, and A. Moshovos, “Cnvlutin: Ineffectual-neuron-free
deep neural network computing,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 1–13, 2016.

[2] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit
quantization of convolutional networks for rapid-deployment,”
Advances in Neural Information Processing Systems, vol. 32,
2019.

[3] Y. Bengio, N. Léonard, and A. Courville, “Estimating
or propagating gradients through stochastic neurons for
conditional computation,” arXiv preprint arXiv:1308.3432,
2013.

[4] A. Bhandare, V. Sripathi, D. Karkada, V. Menon, S. Choi,
K. Datta, and V. Saletore, “Efficient 8-bit quantization of
transformer neural machine language translation model,”
arXiv preprint arXiv:1906.00532, 2019.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell
et al., “Language models are few-shot learners,” Advances
in neural information processing systems, vol. 33, pp. 1877–
1901, 2020.

[6] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney,
and K. Keutzer, “Zeroq: A novel zero shot quantization
framework,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 13 169–
13 178.

[7] Z. Cai and N. Vasconcelos, “Rethinking differentiable search
for mixed-precision neural networks,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 2349–2358.

[8] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi,
“A dynamically configurable coprocessor for convolutional
neural networks,” in Proceedings of the 37th annual inter-
national symposium on Computer architecture, 2010, pp.
247–257.

[9] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and
L. Tang, “Prophet: Precise qos prediction on non-preemptive
accelerators to improve utilization in warehouse-scale com-
puters,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2017, Xi’an, China,
April 8-12, 2017. ACM, 2017, pp. 17–32.

https://github.com/clevercool/ANT_Micro22
https://doi.org/10.5281/zenodo.7002114
https://doi.org/10.5281/zenodo.7002114
https://doi.org/10.5281/zenodo.7002114
https://github.com/clevercool/ANT_Micro22
https://github.com/clevercool/ANT_Micro22
https://github.com/clevercool/ANT_Micro22
https://github.com/clevercool/ANT_Micro22
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

[10] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos
awareness and increased utilization for non-preemptive
accelerators in warehouse scale computers,” in Proceedings
of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016. ACM,
2016, pp. 681–696.

[11] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Kr-
ishnamurthy, “TVM: an automated end-to-end optimizing
compiler for deep learning,” in 13th USENIX Symposium
on Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018. USENIX
Association, 2018, pp. 578–594.

[12] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 1, pp. 269–284,
2014.

[13] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolu-
tional neural networks,” IEEE journal of solid-state circuits,
vol. 52, no. 1, pp. 127–138, 2016.

[14] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun et al., “Dadiannao: A machine-
learning supercomputer,” in 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 2014,
pp. 609–622.

[15] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srini-
vasan, and K. Gopalakrishnan, “Pact: Parameterized clipping
activation for quantized neural networks,” arXiv preprint
arXiv:1805.06085, 2018.

[16] Y. Choi, Y. Kim, and M. Rhu, “Lazy batching: An sla-
aware batching system for cloud machine learning inference,”
in IEEE International Symposium on High-Performance
Computer Architecture, HPCA 2021, Seoul, South Korea,
February 27 - March 3, 2021. IEEE, 2021, pp. 493–506.

[17] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-
bit quantization of neural networks for efficient inference,”
in 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW). IEEE, 2019, pp. 3009–3018.

[18] K. Chowdhary, “Natural language processing,” Fundamentals
of artificial intelligence, pp. 603–649, 2020.

[19] W. Cui, M. Wei, Q. Chen, X. Tang, J. Leng, L. Li, and
M. Guo, “Ebird: Elastic batch for improving responsiveness
and throughput of deep learning services,” in 37th
IEEE International Conference on Computer Design, ICCD
2019, Abu Dhabi, United Arab Emirates, November 17-20,
2019. IEEE, 2019, pp. 497–505. [Online]. Available:
https://doi.org/10.1109/ICCD46524.2019.00075

[20] W. Cui, H. Zhao, Q. Chen, H. Wei, Z. Li, D. Zeng, C. Li, and
M. Guo, “DVABatch: Diversity-aware Multi-Entry Multi-Exit
batching for efficient processing of DNN services on GPUs,”
in 2022 USENIX Annual Technical Conference (USENIX
ATC 22), 2022, pp. 183–198.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE conference on computer vision and pattern
recognition. Ieee, 2009, pp. 248–255.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018.

[23] Z. Dong, Z. Yao, D. Arfeen, A. Gholami, M. W. Mahoney,
and K. Keutzer, “Hawq-v2: Hessian aware trace-weighted
quantization of neural networks,” Advances in neural in-
formation processing systems, vol. 33, pp. 18 518–18 529,
2020.

[24] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and
K. Keutzer, “Hawq: Hessian aware quantization of neural
networks with mixed-precision,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2019, pp. 293–302.

[25] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly et al., “An image is worth 16x16 words:
Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020.

[26] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,
X. Feng, Y. Chen, and O. Temam, “Shidiannao: Shifting
vision processing closer to the sensor,” in Proceedings of
the 42nd Annual International Symposium on Computer
Architecture, 2015, pp. 92–104.

[27] Y. Gan, Y. Qiu, L. Chen, J. Leng, and Y. Zhu, “Low-
latency proactive continuous vision,” in Proceedings of the
ACM International Conference on Parallel Architectures and
Compilation Techniques, 2020, pp. 329–342.

[28] Y. Gan, Y. Qiu, J. Leng, M. Guo, and Y. Zhu, “Ptolemy:
Architecture support for robust deep learning,” in 2020 53rd
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2020, pp. 241–255.

[29] A. Gholami, Z. Yao, S. Kim, M. W. Mahoney, and K. Keutzer,
“Ai and memory wall,” RiseLab Medium Post, 2021.

[30] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
“A 240 g-ops/s mobile coprocessor for deep neural networks,”
in Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, 2014, pp. 682–687.

[31] Y. Guan, J. Leng, C. Li, Q. Chen, and M. Guo, “How far
does bert look at: Distance-based clustering and analysis of
bert ′ s attention,” arXiv preprint arXiv:2011.00943, 2020.

[32] Y. Guan, Z. Li, J. Leng, Z. Lin, and M. Guo, “Transkimmer:
Transformer learns to layer-wise skim,” arXiv preprint
arXiv:2205.07324, 2022.

[33] Y. Guan, Z. Li, Z. Lin, Y. Zhu, J. Leng, and M. Guo,
“Block-skim: Efficient question answering for transformer,” in
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, no. 10, 2022, pp. 10 710–10 719.

https://doi.org/10.1109/ICCD46524.2019.00075

[34] C. Guo, B. Y. Hsueh, J. Leng, Y. Qiu, Y. Guan, Z. Wang,
X. Jia, X. Li, M. Guo, and Y. Zhu, “Accelerating sparse
dnn models without hardware-support via tile-wise sparsity,”
in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2020,
pp. 1–15.

[35] C. Guo, Y. Qiu, J. Leng, X. Gao, C. Zhang, Y. Liu,
F. Yang, Y. Zhu, and M. Guo, “SQuant: On-the-fly
data-free quantization via diagonal hessian approximation,”
in International Conference on Learning Representations,
2022. [Online]. Available: https://openreview.net/forum?id=
JXhROKNZzOc

[36] C. Guo, Y. Zhou, J. Leng, Y. Zhu, Z. Du, Q. Chen, C. Li,
B. Yao, and M. Guo, “Balancing Efficiency and Flexibility
for DNN Acceleration via Temporal GPU-Systolic Array
Integration,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1–6.

[37] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in Interna-
tional conference on machine learning. PMLR, 2015, pp.
1737–1746.

[38] J. L. Gustafson and I. T. Yonemoto, “Beating floating point
at its own game: Posit arithmetic,” Supercomputing frontiers
and innovations, vol. 4, no. 2, pp. 71–86, 2017.

[39] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantiza-
tion and huffman coding,” arXiv preprint arXiv:1510.00149,
2015.

[40] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both
weights and connections for efficient neural networks,” arXiv
preprint arXiv:1506.02626, 2015.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[42] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, “Quantization and training
of neural networks for efficient integer-arithmetic-only infer-
ence,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 2704–2713.

[43] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, K. Gopalakr-
ishnan, and L. Chang, “Biscaled-dnn: Quantizing long-
tailed datastructures with two scale factors for deep neural
networks,” in 2019 56th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2019, pp. 1–6.

[44] Z. Jia, O. Padon, J. J. Thomas, T. Warszawski, M. Zaharia,
and A. Aiken, “TASO: optimizing deep learning computation
with automatic generation of graph substitutions,” in Pro-
ceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP). ACM, 2019, pp. 47–62.

[45] M. A. Joshi, Digital image processing: An algorithmic
approach. PHI Learning Pvt. Ltd., 2018.

[46] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al.,
“In-datacenter performance analysis of a tensor processing
unit,” in Proceedings of the 44th annual international
symposium on computer architecture, 2017, pp. 1–12.

[47] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J.
Hwang, and C. Choi, “Learning to quantize deep networks
by optimizing quantization intervals with task loss,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4350–4359.

[48] W. Kahan, “Ieee standard 754 for binary floating-point
arithmetic,” Lecture Notes on the Status of IEEE, vol. 754,
no. 94720-1776, p. 11, 1996.

[49] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
Advances in neural information processing systems, vol. 25,
pp. 1097–1105, 2012.

[50] P. Kurup and T. Abbasi, Logic synthesis using Synopsys®.
Springer Science & Business Media, 2012.

[51] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, Q. Chen,
M. Guo, and V. J. Reddi, “Asymmetric resilience: Ex-
ploiting task-level idempotency for transient error recovery
in accelerator-based systems,” in 2020 IEEE International
Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 44–57.

[52] Y. Li, X. Dong, and W. Wang, “Additive powers-of-two
quantization: An efficient non-uniform discretization for
neural networks,” arXiv preprint arXiv:1909.13144, 2019.

[53] Y. Li, M. Shen, J. Ma, Y. Ren, M. Zhao, Q. Zhang, R. Gong,
F. Yu, and J. Yan, “Mqbench: Towards reproducible and
deployable model quantization benchmark,” arXiv preprint
arXiv:2111.03759, 2021.

[54] Z. Liu, J. Leng, Z. Zhang, Q. Chen, C. Li, and M. Guo,
“VELTAIR: towards high-performance multi-tenant deep
learning services via adaptive compilation and scheduling,”
in ASPLOS ’22: 27th ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, 28 February 2022
- 4 March 2022, B. Falsafi, M. Ferdman, S. Lu, and T. F.
Wenisch, Eds. ACM, 2022, pp. 388–401. [Online].
Available: https://doi.org/10.1145/3503222.3507752

[55] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: improving resource efficiency at
scale,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA), 2015.

[56] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa,
“Bubble-up: increasing utilization in modern warehouse
scale computers via sensible co-locations,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO),
2011.

[57] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,
D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev,
G. Venkatesh, and H. Wu, “Mixed precision training,” in
International Conference on Learning Representations, 2018.

https://openreview.net/forum?id=JXhROKNZzOc
https://openreview.net/forum?id=JXhROKNZzOc
https://doi.org/10.1145/3503222.3507752

[58] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional
neural networks using logarithmic data representation,” arXiv
preprint arXiv:1603.01025, 2016.

[59] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“Cacti 6.0: A tool to model large caches,” HP laboratories,
vol. 27, p. 28, 2009.

[60] M. Nagel, R. A. Amjad, M. Van Baalen, C. Louizos,
and T. Blankevoort, “Up or down? adaptive rounding for
post-training quantization,” in International Conference on
Machine Learning. PMLR, 2020, pp. 7197–7206.

[61] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko,
M. van Baalen, and T. Blankevoort, “A white paper on neural
network quantization,” arXiv preprint arXiv:2106.08295,
2021.

[62] A. V. Nori, R. Bera, S. Balachandran, J. Rakshit, O. J.
Omer, A. Abuhatzera, B. Kuttanna, and S. Subramoney,
“Reduct: Keep it close, keep it cool!: Efficient scaling of
dnn inference on multi-core cpus with near-cache compute,”
in 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2021, pp. 167–180.

[63] NVIDIA, “Tensorrt: A c++ library for high performance
inference on nvidia gpus and deep learning accelerators,”
https://github.com/NVIDIA/TensorRT, accessed: 2021-04-27.

[64] Nvidia, “Nvidia a100 tensor core architecture,” in Technical
report. NVIDIA, 2020.

[65] V. G. Oklobdzija, “An algorithmic and novel design of a
leading zero detector circuit: Comparison with logic syn-
thesis,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 2, no. 1, pp. 124–128, 1994.

[66] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural
network accelerator based on outlier-aware low-precision
computation,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2018,
pp. 688–698.

[67] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga
et al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing
systems, vol. 32, pp. 8026–8037, 2019.

[68] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal,
“Memory-centric accelerator design for convolutional neural
networks,” in 2013 IEEE 31st International Conference on
Computer Design (ICCD). IEEE, 2013, pp. 13–19.

[69] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan,
D. Das, B. Kaul, and T. Krishna, “Sigma: A sparse and
irregular gemm accelerator with flexible interconnects for
dnn training,” in 2020 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE,
2020, pp. 58–70.

[70] Y. Qiu, J. Leng, C. Guo, Q. Chen, C. Li, M. Guo, and Y. Zhu,
“Adversarial defense through network profiling based path
extraction,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019.

[71] S. Sarangi and B. Baas, “Deepscaletool: A tool for the
accurate estimation of technology scaling in the deep-
submicron era,” in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2021, pp. 1–5.

[72] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim,
C. Shao, A. Mishra, and H. Esmaeilzadeh, “From high-
level deep neural models to fpgas,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–12.

[73] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra,
and H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically
composable architecture for accelerating deep neural network,”
in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2018, pp. 764–775.

[74] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W.
Mahoney, and K. Keutzer, “Q-bert: Hessian based ultra low
precision quantization of bert,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 05, 2020,
pp. 8815–8821.

[75] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[76] Z. Song, B. Fu, F. Wu, Z. Jiang, L. Jiang, N. Jing, and
X. Liang, “Drq: dynamic region-based quantization for deep
neural network acceleration,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 1010–1021.

[77] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 2818–2826.

[78] T. Tambe, E.-Y. Yang, Z. Wan, Y. Deng, V. J. Reddi, A. Rush,
D. Brooks, and G.-Y. Wei, “Algorithm-hardware co-design of
adaptive floating-point encodings for resilient deep learning
inference,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2020, pp. 1–6.

[79] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and
S. R. Bowman, “Glue: A multi-task benchmark and analysis
platform for natural language understanding,” arXiv preprint
arXiv:1804.07461, 2018.

[80] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse
attention architecture with cascade token and head pruning,”
in 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2021, pp. 97–110.

[81] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-
aware automated quantization with mixed precision,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 8612–8620.

[82] Y. Wang, C. Zhang, Z. Xie, C. Guo, Y. Liu, and J. Leng,
“Dual-side sparse tensor core,” in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2021, pp. 1083–1095.

https://github.com/NVIDIA/TensorRT

[83] Z. Wang, J. Lu, C. Tao, J. Zhou, and Q. Tian, “Learning
channel-wise interactions for binary convolutional neural
networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 568–
577.

[84] H. Yang, A. D. Breslow, J. Mars, and L. Tang, “Bubble-flux:
precise online qos management for increased utilization in
warehouse scale computers,” in The 40th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2013.

[85] G. Yuan, P. Behnam, Z. Li, A. Shafiee, S. Lin, X. Ma, H. Liu,
X. Qian, M. N. Bojnordi, Y. Wang et al., “Forms: fine-
grained polarized reram-based in-situ computation for mixed-
signal dnn accelerator,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 265–278.

[86] A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, “Gobo:
Quantizing attention-based nlp models for low latency and
energy efficient inference,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 811–824.

[87] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat,
“Q8bert: Quantized 8bit bert,” in 2019 Fifth Workshop on
Energy Efficient Machine Learning and Cognitive Computing-
NeurIPS Edition (EMC2-NIPS). IEEE, 2019, pp. 36–39.

[88] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Op-
timizing fpga-based accelerator design for deep convolutional
neural networks,” in Proceedings of the 2015 ACM/SIGDA
international symposium on field-programmable gate arrays,
2015, pp. 161–170.

[89] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned
quantization for highly accurate and compact deep neural
networks,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 365–382.

[90] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Cambricon-x: An accelerator for
sparse neural networks,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–12.

[91] Y. Zhao, Z. Du, Q. Guo, S. Liu, L. Li, Z. Xu, T. Chen, and
Y. Chen, “Cambricon-f: machine learning computers with

[93] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flex-
tensor: An automatic schedule exploration and optimization
framework for tensor computation on heterogeneous system,”
in Architectural Support for Programming Languages and
Operating Systems, Lausanne (ASPLOS), 2020.

fractal von neumann architecture,” in Proceedings of the 46th
International Symposium on Computer Architecture, 2019,
pp. 788–801.

[92] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-
Ali, Y. Wang, J. Yang, D. Zhuo, K. Sen, J. E. Gonzalez,
and I. Stoica, “Ansor: Generating high-performance tensor
programs for deep learning,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2020.

[94] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental
network quantization: Towards lossless cnns with low-
precision weights,” arXiv preprint arXiv:1702.03044, 2017.

[95] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-
net: Training low bitwidth convolutional neural networks with
low bitwidth gradients,” arXiv preprint arXiv:1606.06160,
2016.

[96] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou,
L. Li, T. Chen, and Y. Chen, “Cambricon-s: Addressing
irregularity in sparse neural networks through a cooper-
ative software/hardware approach,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2018, pp. 15–28.

[97] Y. Zhou, M. Yang, C. Guo, J. Leng, Y. Liang, Q. Chen,
M. Guo, and Y. Zhu, “Characterizing and demystifying
the implicit convolution algorithm on commercial matrix-
multiplication accelerators,” in 2021 IEEE International
Symposium on Workload Characterization (IISWC). IEEE,
2021, pp. 214–225.

[98] H. Zhu, R. Wu, Y. Diao, S. Ke, H. Li, C. Zhang, J. Xue,
L. Ma, Y. Xia, W. Cui, F. Yang, M. Yang, L. Zhou, A. Cidon,
and G. Pekhimenko, “ROLLER: Fast and efficient tensor
compilation for deep learning,” in 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), 2022, pp. 233–248.

[99] M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse tensor
core: Algorithm and hardware co-design for vector-wise
sparse neural networks on modern gpus,” in Proceedings of
the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 359–371.

[100] B. Zhuang, M. Tan, J. Liu, L. Liu, I. Reid, and C. Shen,
“Effective training of convolutional neural networks with
low-bitwidth weights and activations,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.

	I Introduction
	II Background
	II-A Quantization Metric
	II-B Fixed-length Quantization
	II-C Mixed-precision Quantization
	II-D Outlier-aware Quantization

	III Motivation: Adaptive Data Type
	III-A Opportunities for Adaptive Type
	III-B Quantization Architecture Analysis

	IV Adaptive Numeric Data Type
	IV-A Intra-tensor ANT: Flint
	IV-B Inter-tensor ANT
	IV-C ANT-based Quantization Framework

	V Type-Fusion Processing Element
	V-A Float-based PE
	V-B Integer-based PE
	V-C blackSigned Number Support
	V-D Mixed-precision Support

	VI Architecture Integration
	VI-A ANT and Dataflow Co-design
	VI-B Instruction Set Extension

	VII Evaluation
	VII-A Methodology
	VII-B Quantization Accuracy
	VII-C Area
	VII-D Performance and Energy
	VII-E ANT Type Selection Analysis

	VIII Related Work
	IX Conclusion
	Appendix
	A Abstract
	B Artifact check-list (meta-information)
	C Description
	C1 How to access
	C2 Hardware dependencies
	C3 Software dependencies
	C4 Data sets and models

	D Installation
	E Evaluation and expected results
	F Methodology

	References

