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ABSTRACT
Transformer-based large language models (LLMs) have achieved
great success with the growing model size. LLMs’ size grows by
240× every two years, which outpaces the hardware progress and
makes model inference increasingly costly. Model quantization is a
promising approach to mitigate the widening gap between LLM size
and hardware capacity. However, the existence of outliers, values
with significant magnitudes, in LLMs makes existing quantization
methods less effective. Prior outlier-aware quantization schemes
adopt sparsity encoding techniques to separate outliers from nor-
mal values where the process requires global coordination (e.g.,
a global sparsity coordination list). This incurs complex encod-
ing/decoding hardware logics and an extra orchestration controller
for the computation between outlier and normal values. As such,
it is not hardware-efficient and hence only achieves sub-optimal
quantization benefits.
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We propose OliVe, an algorithm/architecture co-designed so-
lution that adopts an outlier-victim pair (OVP) quantization and
handles outlier values locally with low hardware overheads and
high performance gains. The key insight of OliVe is that outliers are
important while the normal values next to them are not. Thus those
normal values (called victims) can be sacrificed to accommodate
outliers. This enables a memory-aligned OVP encoding scheme,
which can be efficiently integrated to the existing hardware accel-
erators like systolic array and tensor core. As a result, OliVe-based
accelerator surpasses the existing outlier-aware accelerator, GOBO,
by 4.5× speedup and 4.0× energy reduction, respectively, with a
superior model accuracy.
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Figure 1: Outlier-aware encoding comparison. (a) Prior
quantization works adopt sparsity-based encoding that
store normal and outlier values separately. (b) Our proposed
outlier-victim pair encoding stores normal and outlier val-
ues locally.

1 INTRODUCTION
Transformer-based large language models (LLMs) [77] have demon-
strated great success in the past years. Such success is often achieved
with the increasingly larger model size: the model size grows
by 240× every two years, significantly outpacing the hardware
progress (3.1× per two years) [24]. As a result, the inference of
LLMs becomes challenging and costly. For instance, OPT-175B [90],
a recent Transformer-based LLM, has 175 billion parameters, which
cannot fit in the latest high-end H100 GPU with 80GB memory.

Quantization [6, 7, 21, 22, 72, 74, 79, 93] is one of the most
hardware-efficient ways to reduce inference costs for large models.
It uses low-precision data types to compress models and accelerate
the computation with practical hardware implementations, e.g.,
TPU [42] and GPU tensor core [60].

However, existing quantization schemes [18, 74, 86] are less ef-
fective in Transformer-based LLMs. Recent studies show when the
model size exceeds a threshold (e.g., 6 billion), the model perfor-
mance is vulnerable to only a tiny fraction (< 0.1%) of outliers,
whose values are much more significant than normal values [18].
Indiscriminately clipping both outlier and normal values will lead
to significant drops in model accuracy [18, 82]. As a result, the
common practice is to adopt a larger bit-width, e.g., 8-bit or 16-bit,
to quantize Transform-based models, compared to convolutional
networks (CNNs).

Researchers have proposed various quantization/architecture
co-design works [39, 61, 75, 82, 85] to deal with the outliers in Trans-
former models. For example, outlier suppression [82] proposes to
suppress the outliers. But it still has significant accuracy loss in the
lower bit-width (4-bit), suggesting the difficulty in accommodating
the effects of outliers. In addition, architecture researchers have de-
signed sophisticated outlier-aware hardware architectures to store
outliers with high precision to maintain model accuracy. These
outlier-aware quantization frameworks divide the tensor into nor-
mal and outlier values, and encode them separately using different
ways. For normal values, a dense matrix with low precision (e.g., 4-
bit) quantization is adopted. And the sparse and high-precision (e.g.,

8-bit and 16-bit) outlier values can be compressed with sparsity-
based encoding. Such encoding unfortunately leads to unaligned
memory access. For example, GOBOs [85] and OLAccels [61] use
the coordinate list to indicate the location of each outlier value in
the matrix, as shown in Fig. 1a. BiScaled-DNNs [39] exploits block
sparse indices format to store the outlier indices, and DRQ [75]
uses the direct bitmap for outliers. These outlier-aware solutions
require complex architectural designs with significant hardware
overheads to accommodate outliers. Moreover, due to the random
and unaligned memory access, the sparsity-based encoding is in-
compatible with the memory sub-systems of existing accelerators,
such as GPU and TPU. Specifically, GOBO [85] can only de/com-
press weight tensors on the off-chip DRAM, it still relies on the
original on-chip memory and computation architecture of GPU
with high precision FP16/32.

The aforementioned outlier-aware architectures separate nor-
mal values from outliers in a global way. For instance, GOBO [85]
involves a global sparse coordinate list in the quantization and
computation, leading to a large hardware overhead and low perfor-
mance benefits. In this work, we aim to design an architecture to
handle outliers in a localized way with high hardware efficiency.
To achieve that, we group two consecutive fixed-size values in a
tensor and analyze their impact to model accuracy. There can be
three kinds of pairs: i) a normal pair with two normal values, ii)
one-outlier pair with one normal value and one outlier value, iii)
two-outlier pair with two outlier values. We observe that the third
two-outlier pair almost never shows up in well-trained LLMs. For
the second one-outlier pair, we find that only keeping its outlier
value while pruning its normal value (i.e., treating it as zero) is
sufficient to maintain the model accuracy.

Based on the above observations, we propose a novel outlier-
aware quantization architecture, called OliVe, based on the outlier-
victim pair (OVP) encoding. The salient feature of OliVe is memory-
aligned and therefore hardware-friendly. As illustrated in Fig. 1b,
OliVe first prunes normal values that are adjacent to the outliers
as zero. These pruned normal values are called victims, which
sacrifice themselves and make space for outliers. Then, we exploit
the extra space provided by victims and embed the outliers into the
low-precision matrix.

OliVe is able to maintain a high accuracy for large Transformer
models with a low hardware overhead due to the following reasons.
First, OliVe incorporates victims to tackle outliers in LLMs. The
effects of victims resemble model pruning [36]. Although clipping
a few (0.1%) outliers will lead to a disastrous accuracy drop [18, 82],
pruning the same amount of “normal” values will only impact
model accuracy slightly (< 0.1% drop). Therefore, OliVe sacrifices
(“prunes”) those insignificant values as victims for the outliers,
allowing a more aggressive encoding scheme to accommodate ex-
tremely significant values. Second, the OVP encoding follows a spe-
cific outlier-victim (or victim-outlier) pattern to achieve memory
alignment with little hardware overheads. Each victim is adjacent
to an outlier, and the outlier-victim pair must align the memory
access pattern. For example, in Fig. 1b, right outlier −98 in the OV
pair needs a left victim, and left outliers 17.6 and 30.7 require the
right victims. That can align 8-bit (1-byte) memory accesses with
high efficiency. This design enables a completely localized outlier
decoding/encoding process.
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(a) ResNet-18 on ImageNet.
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(b) BERT𝑏𝑎𝑠𝑒 on MNLI.

Figure 2: Outlier Comparison of CNN model and Trans-
former model. The 𝜎 is the standard deviation of the tensor.
We normalize the maximum number by 𝜎 to plot the Max 𝜎

curve (left y-axis). The > 3𝜎% and > 6𝜎% (right y-axis) are
the percentage of the values of > 3𝜎 and > 6𝜎 , respectively.

To implement OliVe, different data types are employed for out-
liers and normal values, which have different dynamic ranges and
representation formats, including int4 and FP4. As shown in Fig. 1b,
we propose a novel encoding method (Sec. 3) for the 4-bit OV pair,
which composes a 4-bit outlier and a 4-bit victim into a special
8-bit format and differs from the original int8 or FP8. Due to its
hardware-friendly and compatible design, OliVe can be easily in-
tegrated into existing quantization frameworks and accelerator
architectures such as systolic array in Google TPUs [41] and tensor
core in NVIDIA GPUs [58, 60]. OliVe can also inherently support
the mixed-precision and mixed-type architecture, showing its flexi-
bility and practicality for larger-scale Transformer models.

To the best of our knowledge, OliVe is the first work push-
ing the limit of Transformer post-training quantization (PTQ) [4],
which requires no retraining after quantization, to the 4-bit level
for both the weight and activation tensors with the accuracy loss
of < 1%. Surprisingly, OliVe’s 4-bit PTQ accuracies for BERT [19]
and BART [49] models outperform the 6-bit PTQ results of out-
lier suppression [82], a state-of-the-art Transformer quantization
method. OliVe-based accelerator surpasses the existing outlier-
aware accelerators OLAccel [61] and GOBO [85] by 3.8× and 4.5×
performance improvement, and 2.1× and 4.0× energy reduction,
respectively. More importantly, the OliVe-based accelerator has
more comprehensive and practical applicability than other outlier-
specific architectures.

We make the following contributions in this paper.

• We conduct the pair-wise importance analysis and show that
outliers are important while their adjacent normal values are
not, revealing the algorithmic opportunity of outlier-victim
pair (OVP) that sacrifices the colocated normal values (called
victims) to accommodate the outliers.

• We propose the OVP-based quantization framework, called
OliVe, which includes an efficient hardware encoding and
novel outlier representation data type.

• We propose the efficient architectural implementation and
integration of OliVe quantization, and show that its effi-
ciency and benefits outperform the existing outlier-aware
quantization algorithms and hardware accelerators.

2 MOTIVATION: ALIGNED OUTLIER
In this section, we first show that the outlier of the Transformer
model is muchmore significant and important compared to convolu-
tion neural networks (CNN). Previous works [74, 75, 85, 86] propose
the outlier-aware quantization microarchitecture with adaptive bit
length to accomplish the low-bit quantization but necessitate sub-
stantial hardware resources to deal with the variable-length data,
which cause unaligned memory accesses and are incompatible with
the memory sub-system of existing accelerators, e.g., GPU [60].
In contrast, we propose a memory-aligned and hardware-friendly
method, called outlier-victim pair mechanism, which is inspired
by DNN pruning and our outlier group location analysis for Trans-
formers. We can prune some “victims” to make space to embed
high-precision outliers into the memory-aligned low-bit tensor
with ignorable accuracy loss.

2.1 Outlier Matters
We visually demonstrate how significant the Transformer’s outlier
is in Fig. 2. We adopt the empirical 3𝜎 rules [83] of the normal
distribution to divide the values into outlier and normal values. We
employ the ResNet-18 [37] as the representative for the CNN model
and the BERT𝑏𝑎𝑠𝑒 [19] for the Transformer model. We fit the DNN
tensors with normal distribution, i.e., Equation 1, where 𝑥 is the
value, 𝜇 is the mean, and 𝜎 is the standard deviation. We convert
the tensor into a standard normal distribution.

f (𝑥) = 1

𝜎
√
2𝜋

𝑒−
1
2 ( 𝑥−𝜇𝜎 )2 (1)

We collect all tensors’ maximum values and normalize them by the
𝜎 (Max 𝜎). We sort and plot the tensors by their Max 𝜎 in Fig. 2.

Most tensors can fit the normal distribution 3𝜎 rules, i.e., about
99.7% of the values lie within three standard deviations of the mean.
The outlier (> 3𝜎) ratio of most tensors is lower than 0.5%, and
the values of > 6𝜎 are extremely few in tensors. Therefore, normal
values are relatively concentrated, indicating that we can quantize
the normal values with a narrow range to enhance the resolution
of quantization.

The more obvious observation is that the Max 𝜎 of the Trans-
former is larger than that of CNN by one order of magnitude. Some
research [14, 43] shows that although the outliers are clipped for
CNN models, the accuracy can still be restored to the original value
with the retraining algorithm under ultra-low-bit precision, e.g., 4-
bit. However, it is challenging for Transformer models, which have
much more significant outliers. The state-of-the-art quantization
works [18, 82] also demonstrate a similar observation and only can
achieve the original accuracy with higher-precision quantization
for large-scale Transformer models due to the outliers. Therefore,
keeping the outlier without clipping will significantly benefit quan-
tizing Transformer models.

2.2 Outlier Is Unaligned
The importance of outliers has attracted many research interests,
which sparked several outlier-aware architectures, as depicted in
Tbl. 1. OLAccel [61] and GOBO [85] are similar and exploit the
coordinate list to indicate the location of outliers, which use high-
precision (8-bit or 16-bit) quantization. BiScaled-DNN [39] and
DRQ [75] employ block sparse index and bitmap, respectively.
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Accelerator Encoding
Aligned

Memory?

GPU

Compatible?

OLAccel [61] Coordinate list No No

BiScaled-
DNN [39]

Block sparse index
Alined data

Unaligned index
No

DRQ [75] Binary mask map
Unalined data
Aligned index

No

GOBO [85] Coordinate list No DRAM-only

OliVe (Ours) Outlier-victim pair Yes Yes

Table 1: Comparison between existing outlier-aware acceler-
ators and our proposed method OliVe.

BiScaled-DNN quantizes all values with the same bit-width but
different scale factors for normal values and outliers, which are
aligned. However, the extra index compressed in the block sparsity
method is unaligned. On the contrary, DRQ’s bitmap is aligned, but
data is stored by mixed and thus unaligned 4- & 8-bit values.

In summary, prior works design the outlier-aware architecture
based on the sparsity of outliers, which leads to unaligned memory
storage and accesses. More seriously, the indices of sparsity-based
encoding and the outliers are separate. As such, they need the extra
outlier controller to parse indices for the outliers and orchestrate
the computation between normal values and outlier values. For
example, the extra outlier controllers of GOBO and OLAccel count
up to 55% and 71% overhead to the total area of the processing
element (PE) array [61, 85]. The sparsity-based encoding for outliers
is also incompatible with the memory sub-system of existing
accelerators. For the GOBO design [85], it can only compress and
decompress the memory at the DRAM level for GPU. This greatly
limits the applicability of its proposed outlier-aware architecture.

Therefore, a more hardware-friendly and applicable outlier de-
coding/encodingmethod should be proposed to fit the outlier-aware
quantization. Our proposed OliVe architecture is able to align mem-
ory accesses and is also compatible with existing accelerators based
on the OVP mechanism.

2.3 Outlier and Victim Analysis
Generally, the sparsity-based encoding borrowed from DNN prun-
ing is a straightforward and effective solution for sparse outliers.
However, these works ignored that quantization is different from
pruning. For pruning, the pruned zero values do not participate
in the computation. As such, the pruning method has to compress

Pair Type Normal-Normal Outlier-Normal Outlier-Outlier

BERT𝑏𝑎𝑠𝑒 [19] 99.12% 0.84% 0.04%

BERT𝑙𝑎𝑟𝑔𝑒 [19] 99.24% 0.71% 0.05%

GPT2-XL [66] 98.80% 1.14% 0.06%

OPT-6.7B [90] 99.33% 0.64% 0.03%

Table 2: The percentage of three types of pair.
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Figure 3: Accuracy comparison of multiple pruning meth-
ods.

the sparse values with sparsity-based encoding. For quantization,
the quantized normal values are the majority and need computa-
tion. Naturally, the outlier values can exploit the normal values to
achieve memory alignment instead of sparsity-based encoding.

As depicted in Fig. 1b in Sec. 1, we employ the insight of prun-
ing but with a different perspective from prior works. The new
method employs the outlier-victim pair (OVP) mechanism. We
first prune some quantized low-precision normal values, which we
call victims. These victims are adjacent to the outliers and make
extra space for the high-precision outliers. Therefore, we can em-
bed the outliers in their original location without explicit sparse
indexing. That can avoid the complex indexing hardware and make
it compatible with GPU. To align the memory, we distinguish the
“right outlier” and “left outlier” according to their position in the
pair. We assign a right victim for the left outlier (e.g., 17.6 in Fig. 1b)
and a left victim for the right outlier (e.g., −98 in Fig. 1b).

The OVP mechanism is based on our observation of large Trans-
former models, including BERT-base [19], BERT-large [19], GPT2-
XL [66], and OPT-6.7B [90]. We collect all tensors, calculate their
standard variance 𝜎 , and divide the values into normal values (< 3𝜎)
and outlier values (> 3𝜎) by the 3𝜎 rule. We then pair every two
adjacent values (no overlapping), which leads to three types: normal-
normal pair, outlier-normal pair, and outlier-outlier pair, as shown
in Tbl. 2. These three types have two normal values, one normal
value and one outlier value, and two outlier values, respectively.

Tbl. 2 demonstrates that most (about 99%) pairs are normal-
normal pairs, with only around 1% of outlier-normal pairs. Outlier-
outlier pairs need to prune the smaller outlier in the pair. Fortu-
nately, the outlier-outlier pairs only have an extremely low proba-
bility of less than 0.06% in all studied models. Therefore, the outlier
distribution is extremely dispersed, and we can retain most outliers.

We also conducted the accuracy experiments with the BERT𝑏𝑎𝑠𝑒
model [82] on the GLUE dataset [78], as depicted in Fig. 3. First, we
clip the outliers to the 3𝜎 , where clipping is the common method
adopted by quantization. Then, we prune the victims and normal
values to zero. The victims are adjacent to the outliers, and normal
values are randomly pruned with the same amount as the outliers.
We keep the rest values with full precision (FP32). Although such
few outliers (about 1%) are clipped, as shown in Fig. 3 clipping
outlier, the accuracy loss is unacceptable for the BERT model. The
results emphasize the importance of outliers in Transformer-based
model. For comparison, pruning random normal values has almost
no accuracy loss than the source accuracy. The pruning of victim
values only shows a negligible accuracy decrease than the pruning
of normal values because the victims include some outliers due to
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the outlier-outlier pair and have specific locations corresponding
to the adjacent outlier.

In summary, our analysis indicates that outliers are important
while the victims are not, so that we can sacrifice victims to ac-
commodate the outliers. This motivates us to design the hardware-
friendly OVP mechanism that provides aligned outlier-aware quan-
tization to accelerate the large Transformer models. In the next
section, we will introduce the outlier-victim pair encoding design.

3 OUTLIER-VICTIM PAIR ENCODING
In this section, we present the details of outlier-victim pair (OVP)
encoding that is globally identical but locally distinguishable
for outlier and normal values. The OVP encoding can maintain
globally aligned memory access and distinguish the outliers locally
with ignorable overhead. For normal values, we can support multi-
ple data types to fit the adaptive data type. For encoding outliers, we
design an outlier-specific data type, adaptive bias float, abfloat,
which can avoid range overlapping between normal values and
outliers, thus improving the utilization ratio of the numerical rep-
resentation space of outlier encoding. Finally, based on the OVP
encoding, we propose a framework that can automatically select
the outlier threshold for OVP encoding to determine a suitable ratio
of the outlier-victim pair.

3.1 OVP Encoding Algorithm
Based on the previous pair-wise tenor value analysis, there are
three pair types: normal-normal, outlier-normal, and outlier-outlier.
For outlier-normal, the normal value in the pair will be pruned and
turned into a victim. For outlier-outlier, we remain the large one

Algorithm 1: The 4-bit OVP encoding algorithm.
Input: Values, 𝑣𝑎𝑙1, 𝑣𝑎𝑙2; Outlier threshold,𝑇 .
Output: OVP encoding, 𝑜𝑢𝑡1, 𝑜𝑢𝑡2.

1 def OVPairEncoding(𝑣𝑎𝑙1, 𝑣𝑎𝑙2,𝑇):
2 if 𝑣𝑎𝑙1 > 𝑇 and 𝑣𝑎𝑙1 > 𝑣𝑎𝑙2 then
3 𝑜𝑢𝑡1 = OutlierQuantization(𝑣𝑎𝑙1);
4 𝑜𝑢𝑡2 = 10002; // Outlier identifier.

5 else if 𝑣𝑎𝑙2 > 𝑇 then
6 𝑜𝑢𝑡1 = 10002
7 𝑜𝑢𝑡2 = OutlierQuantization(𝑣𝑎𝑙2);
8 else
9 𝑜𝑢𝑡1 = NormalQuantization(𝑣𝑎𝑙1);

10 𝑜𝑢𝑡2 = NormalQuantization(𝑣𝑎𝑙2);
11 return 𝑜𝑢𝑡1, 𝑜𝑢𝑡2

and prune the other. Then, we get the normal-normal pairs and
outlier-victim pairs in the DNN tensors.
Outlier Identifier. To distinguish from the normal-normal pair,
we need a special identifier for the outlier-victim pair. And this
distinct identifier cannot appear in the normal-normal pair, which
means we need to eliminate one number in the representation of
normal values. For example, as shown in Fig. 4, we employ the
signed int4 (4-bit integer) for the normal value quantization. The
original int4 can represent the integers in the range of [−8, 7],
where 10002 represents the value of −8. First, we make 10002
the outlier identifier and remove the value of 10002 from int4,
whose encoding range becomes [−7, 7]. Second, we quantize the
outlier-victim pairs with 4-bit OVP encoding. We set the victims
with the outlier identifier 10002 and quantize the outlier with the
outlier-specific data type (Sec. 3.3). Naturally, there are two types
of OV pair, i.e., left outlier (O-V) and right outlier (V-O) pair. Due to
the distinct outlier identifier design, we can implicitly distinguish
them without using an extra index bit (Sec. 4.2).

Algo. 1 shows the 4-bit OVP encoding algorithm, which needs to
read two values simultaneously, where the requirement is very easy
to meet. For the hardware implementation, we can add a buffer
for the encoder. Also, the OVP encoder can be implemented by
embedding in the quantization unit with ignorable overheads. For
the software implementation, we can make a thread handle two
values simultaneously. As a result, the encoding algorithm can be
implemented efficiently in both hardware and software, which we
describe more details later.

3.2 Data Type for Normal Values
For normal values, we build upon prior work [32], which can sup-
port multiple data types, including int4, flint4 (4-bit flint),
and int8, as shown in Tbl. 3. The int4 type is one of the most
widely used data types for 4-bit quantization with integers in the
value range of [−7, 7]. The flint4 type is proposed by prior work
ANT [32], which has shown that selecting the data type according
to a tensor’s distribution achieves the state-of-the-art performance
and accuracy.

Based on the above insights, we also adopt the mixed data types
to quantize normal values in our OVP pair encoding. For flint4,
we use the same binary value of 10002 as the outlier identifier.
Specifically, 10002 of flint4 corresponds to −0, which is not used
in the original design. In other words, our OVP encoding seamlessly
works for flint4 without wasting any number representations.
We use the original flint4 encoding algorithm [32] to quantize
normal values.

Moreover, the OVP encoding can be generally extended to higher-
precision quantization, such as the 8-bit. Similarly, the 8-bit normal

Data Type Values Outlier Identifier

int4 0,±1,±2,±3,±4,±5,±6,±7 10002 (-8)

flint4 [32] 0,±1,±2,±3,±4,±6,±8,±16 10002 (-0)

int8 0,±1,±2, · · · ,±126,±127 100000002 (-128)
Table 3: Data types for normal values of OVP encoding.
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Figure 5: The rounding error of the largest outliers quan-
tized with different data types. Experiments were conducted
on BERT-base, BERT-large, BART-base, and GPT2-XL.

value also needs to eliminate one number. For instance, int8 can
represent [−128, 127] integers, and we can make 100000002 the
outlier identifier for int8 and narrow its range to [−127, 127].
Similarly, the encoding algorithm can easily extend to read two
8-bit elements simultaneously.

3.3 Data Type for Outliers: Abfloat
Next, we quantize outliers using the outlier-specific data type. The
large outliers usually have a wide range, for which we use float-
based data to quantize. We propose a data type called adaptive
biased float, abfloat in short. The key idea is that by adding a
proper bias to the exponent, all encoded values can skip the interval
where normal values lie and provide more range for outliers.
Float-to-Fixed Conversion. To accommodate the normal values
and avoid fractions, we first convert the floating-point encoding to
the fixed point with an exponent. Also, the fixed point is friendly to
the hardware implementation and has a lower overhead than the
floating point. We transform the the floating point to fixed point
with the following equation,

sign × (1 ≪ mb + mantissa) ≪ (exponent + bias), (2)

where mb is the mantissa bit-width. Therefore, this fixed-point
encoding scheme is more friendly and efficient for hardware im-
plementation, as it only involves shift operations. Tbl. 4 shows the
example of fixed-point E2M1 data type.
Adaptive Bias. Obviously, Tbl. 3 and Tbl. 4 show that the range of
fixed-point abfloat overlaps with the normal values. For example,
int4 and E2M1 contain the same numbers, 3, 4, and 6. Another
example is that flint4 and E2M1 have almost the same number
range except for 24. Therefore, we need the adaptive bias to ad-
just the range of abfloat. For example, we set bias = 2 for E2M1,
whose real values will be extended to {12, · · · , 96}, which is com-
plementary with the int4 normal value. Similarly, we set bias = 3

Binary Exponent Integer Real Value
000 0 0 0
001 0 3 3 × 20 = 3

01x 1 2, 3 2 × 21 = 4, 3 × 21 = 6

10x 2 2, 3 2 × 22 = 8, 3 × 22 = 12

11x 3 2, 3 2 × 23 = 16, 3 × 23 = 24

Table 4: The 3-bit unsigned E2M1, which means two bits for
exponent and one bit for mantissa, with bias = 0.

Algorithm 2: The abfloat encoding algorithm.
Input: Element 𝑒 ; Bias, 𝑏;
Output: Quantized Element 𝑞;

1 def AbfloatQuant(𝑒 , 𝑏):
// Get exponent and base integer.

2 𝑒𝑥𝑝 = ⌊𝑙𝑜𝑔2 (𝑎𝑏𝑠 (𝑒)) ⌋ − 1;
3 𝑏𝑎𝑠𝑒_𝑖𝑛𝑡 = 𝑅𝑜𝑢𝑛𝑑 [𝑒/2𝑒𝑥𝑝 ];
4 if 𝑏𝑎𝑠𝑒_𝑖𝑛𝑡 == 4 then
5 𝑒𝑥𝑝 = 𝑒𝑥𝑝 + 1;
6 𝑏𝑎𝑠𝑒_𝑖𝑛𝑡 = 𝑏𝑎𝑠𝑒_𝑖𝑛𝑡 − 2;

// Encoded as abfloat data type.

7 𝑒𝑥𝑝 = 𝑒𝑥𝑝 − 𝑏;
8 𝑏𝑎𝑠𝑒_𝑖𝑛𝑡 = 𝑏𝑎𝑠𝑒_𝑖𝑛𝑡 & 1;
9 𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑_𝑞 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑒𝑥𝑝,𝑏𝑎𝑠𝑒_𝑖𝑛𝑡 ) ;

10 𝑞 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑒 < 0,𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑_𝑞)
11 return 𝑞

and extend range to {24, · · · , 192} for flint4 data type. We de-
sign a new decoder and instruction to implement adaptive bias in
accelerators for the abfloat (Sec. 4.2).
E2M1 Abfloat. The 4-bit signed float has four possible configu-
rations of exponent and mantissa: E0M3, E1M2, E2M1, and E3M0.
They have different ranges and precisions. We conduct the follow-
ing experiments to choose the most appropriate configuration as
the final outlier-specific data type. To accommodate the broad range
of outlier values, we quantize the largest outlier values (i.e., Max
𝜎 in Fig. 2) in Transformer models using all abfloat types. Then,
we collect the average absolute error, as shown in Fig. 5. We found
that E2M1 gives the least error in all tests, which provides both a
large enough range and a certain degree of precision, and it also
presents the best results in our subsequent evaluations. Similarly,
we adopt signed E4M3 for 8-bit abfloat.

Algo. 2 shows in detail how an element is encoded as abfloat.
The outlier encoding is an element-wise function, which can be im-
plemented on software and hardware efficiently. Outlier encoding
should also eliminate the outlier identifier. Otherwise, the decoder
cannot distinguish the outlier-victim pair. Abfloat has two zero
numbers: 1000 (-0) and 0000 (0). Therefore, we disable the 1000 and
0000 for outlier values to avoid conflict with the outlier identifier.

3.4 Quantization Framework
We now apply OVP (outlier-victim pair) encoding for quantizing
Transformer models. To decide the scale factor (i.e., outlier-victim
threshold), we embed the OVP encoding with the existing mean
squared error (MSE) minimization algorithm, which is commonly
used by many quantization works [4, 6, 88]. The OVP-based quan-
tization algorithm determines the threshold for distinguishing out-
liers and normal values. On one hand, a small threshold would lead
to more outlier-victim pairs, which could potentially minimize the
quantization error (i.e., MSE). On the other hand, it also increases
the ratio of outlier-outlier pairs, where both values are outliers in
the pair. If there are too many such outlier-outlier pairs, the MSE
would increase owing to the pruning of outliers. Thus, we need to
control the ratio of outlier-outlier pairs for better accuracy.
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In our work, we target the post-training quantization (PTQ) [57],
which does not require retraining and hence is best suitable for
large models as their trainings are expensive. However, we still
need to use one batch of data from the training set for the scale
factor selection. Intuitively, inspired by the 3𝜎 rule, we take 3𝜎
as the initial scale factor. Then the algorithm will search for the
best scale factor with the smallest MSE within a specific range of
this baseline, which shows good results in our evaluations. For
quantization-aware training (QAT) [57], we can get a suitable scale
factor by retraining it with the straight-through estimator (STE) [5].

4 OLIVE ARCHITECTURE
This section presents how to integrate OliVe in GPU and output-
stationary systolic array architecture.We then present the hardware
decoder for the aforementioned outlier-victim pair encoding and
outlier data type. On these architectures, our proposed OliVe archi-
tecture can directly support the mixed precision [60, 72] and mixed
data type [60, 72], which are efficient for quantizing DNN tensors
that have different importance and distribution.

4.1 GPU Tensor Core
We first describe how to integrate the OliVe design into the ten-
sor core architecture of GPU in the Fig. 6a. We employ Turing
architecture [59] as our baseline GPU, which has 68 streaming mul-
tiprocessors (SMs), and each SM has eight tensor cores (544 in total),
as shown in Tbl. 5. According to the modeling of prior work [67],
each tensor core has two octets, which have eight FEDPs (four-
element dot product). As such, there are 68×8×2×8×4 = 34, 816
16-bit float multipliers. The Turing architecture can originally sup-
port mixed-precision computation. For example, the RTX 2080Ti
GPU with Turing architecture [59] provides 107.6, 215.2, and 430.3
TOPS (tera operations per second) for 16-bit float, 8-bit int, and
4-bit int, respectively. Therefore, we assume that the tensor core
can simultaneously support 8-bit 8EDP (eight-element dot product)
and 4-bit 16EDP (16-element dot product), as shown in Fig. 6a.

Architecture SM TC 16-bit Unit 8-bit Unit 4-bit Unit

Turing [59] 68 544 34,816 69,632 139,264
Table 5: The Turing GPU architecture.

We can easily embed our proposed OliVe architecture in GPU,
which adopts the SIMD architecture. We first put the 4-bit outlier-
victim pair decoders (Fig. 6b) for each 16EDP. To support the new
OliVe data types, we add an adder and a shifter for each 16EDP.
Similarly, we also design the 8-bit decoder for the 8EDP units.

4.2 Decoders

Outlier-Victim Pair Decoder. To support outlier-victim pair de-
coding, we design a new decoder that can be easily embedded in
existing accelerators. As shown in Fig. 6b, the decoder reads 1 byte,
which is the smallest addressable memory unit in many architec-
tures, and exactly one value pair. Then, the decoder transforms the
outlier identifier 10002 to 0 and decodes the outlier value with the
outlier decoder. To accommodate the computation of the outlier
abfloat values, the decoder will generate an exponent-integer pair.
Therefore, the decoder needs to append a 00002 as the exponent
number for the normal int4 data type. For flint4, we exploit its
original decoder [32] to get the exponent-integer pair.
Outlier Decoder. The above OVP decoder contains an outlier
decoder for outlier values with the E2M1 abfloat data type. Fig. 7
shows the details of the 4-bit abfloat decoder design. For a 4-bit
E2M1 abfloat number 𝑥 = (𝑏2𝑏1𝑏0)2, following equations decode
exponent and integer:

exponent = bias + (b2b1)2

integer =

{
0 𝑖 𝑓 𝑥 = 0002

(1𝑏0)2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Figure 7: The 4-bit abfloat decoder for outlier values.
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For example, when the bias is 2, a number 01012 is 4810, since
its exponent is 210 + 102 = 410 and base integer is 112 = 310.
Therefore, its real value is 3 ≪ 4 = 48.

Similarly, we also design and implement the 8-bit outlier-victim
pair decoder and the E4M3 abfloat outlier decoder, which are
straightforward extensions of 4-bit instances. As such, we do not
present their details due to the limited space.

4.3 Systolic Array
The systolic array (SA) integration is shown in Fig. 8. SA uses the
same outlier-victim pair decoder design (Fig. 6b) as GPU, which
shows the wide applicability of our design. But, unlike GPU, we
only place the decoders along the borderlines, which can save most
decoders. For example, if the array size is 𝑛×𝑚, we only need 𝑛 +𝑚
instead of 𝑛 ×𝑚 decoders. That is one advantage of SA over the
GPU’s SIMD architecture. Our proposed OliVe-based data type can
also support the systolic array processing element (PE) with an
extra adder and shifter. We add an extra adder for every four PEs
to support high-precision quantization, e.g., int8.

4.4 OliVe MAC unit
After decoding for outlier and normal values, they are all trans-
formed into unified exponent-integer pairs. To support the decoded
exponent-integer pair computation, we need to add a shifter and
an adder for the fixed-point MAC (multiply and accumulation) unit,
as shown in Fig. 8 and the unit of Fig. 6 4-bit 16EDP. For example,
we have two exponent-integer pairs < 𝑎, 𝑏 > and < 𝑐, 𝑑 >, where 𝑎
and 𝑐 are exponents, 𝑏 and 𝑑 are integers, and < 𝑎, 𝑏 > represents:

< 𝑎, 𝑏 >= 𝑏 ≪ 𝑎

Then, we can get the result:

< 𝑎, 𝑏 > × < 𝑐, 𝑑 >

= (𝑏 × 𝑑) ≪ (𝑎 + 𝑐)
= < 𝑎 + 𝑐, 𝑏 × 𝑑 >

Note that the final result can store with a 32-bit int.

4.5 Mixed Precision
As mentioned in Sec. 3, OliVe quantization can support the int8
for normal values and E4M3 abfloat for outlier values. Therefore,

we propose the mixed-precision processing element (PE) for the
higher precision data types.
8-bit Int. For the GPU tensor core architecture, it is originally
designed with mixed-precision computation. For the systolic array,
our architecture naturally supports 8-bit computation with four
4-bit PEs [72]. For an int8 number 𝑥 , the higher 4 bits and the
lower 4 bits can be split into two 4-bit numbers ℎ and 𝑙 , and the 𝑥
can be represented by:

𝑥 = (ℎ𝑥 ≪ 4) + 𝑙𝑥 =< 4, ℎ𝑥 > + < 0, 𝑙𝑥 > .

We then can multiply two int8 numbers of 𝑥 and 𝑦:

𝑥 × 𝑦 =< 4, ℎ𝑥 > × < 4, ℎ𝑦 >︸                      ︷︷                      ︸
𝑃𝐸0

+< 4, ℎ𝑥 > × < 0, 𝑙𝑦 >︸                      ︷︷                      ︸
𝑃𝐸1

+< 0, 𝑙𝑥 > × < 4, ℎ𝑦 >︸                      ︷︷                      ︸
𝑃𝐸2

+< 0, 𝑙𝑥 > × < 0, 𝑙𝑦 >︸                     ︷︷                     ︸
𝑃𝐸3

Therefore, we can use four 4-bit PEs to calculate the above four
multiplications and accumulate the products to get the final product
value of 𝑥 × 𝑦.
8-bit Abfloat Similarly, multiplication of 8-bit abfloat can be
supported using the same approach. For an 8-bit abfloat number
𝑧, it is first decoded into an exponent 𝑒𝑧 and an integer 𝑖𝑧 . For 𝑖𝑧 ,
we similarly split it into 𝑖𝑧 = (ℎ𝑧 << 4) + 𝑙𝑧 , then 𝑧 =< 4 + 𝑒𝑧 , ℎ𝑧 >

+ < 𝑒𝑧 , 𝑙𝑧 >. Hence the same method can be used to perform 8-bit
abfloatmultiplication with four 4-bit PEs, where the abfloat has
an extra 𝑒𝑧 than int8.

In the most extreme case, two outliers with abfloat may be
multiplied together. Because we adopt the 32-bit int as the accu-
mulator, the maximum multiplicand should not be over

√
231 − 1.

Therefore, for the outlier value with the abfloat type, we will clip
the absolute value of the outlier within 215 <

√
231 − 1 to avoid

the overflow for the int32 accumulators. Our experiments show
that the outlier values of the Transformer models are much smaller
than 215. Specifically, 215 is about 768𝜎 after normalization and
quantization. As shown in Fig. 2, the maximum value of outliers
does not exceed 325𝜎 . Thus, we observe that no outlier is truncated
in practice.

4.6 Instruction Set
For 4-bit tensor cores, the Turing GPU architecture adopts the
instruction mma.s32.s4.s4.s32. These four operands are matrices
𝐷 (int32), 𝐴 (int4), 𝐵 (int4), and 𝐶 (int32), and 𝐷 = 𝐴 × 𝐵 +𝐶 .
To support the OVP-based computation on GPU, we design a new
instruction called mmaovp:

𝑚𝑚𝑎𝑜𝑣𝑝︸    ︷︷    ︸
OVP−MMA

.s32. 𝑜𝑣𝑝𝑖4︸︷︷︸
int4

. 𝑜𝑣𝑝 𝑓 4︸︷︷︸
flint4

.s32. 𝑠4︸︷︷︸
bias

.

Moreover, because of thememory-aligned design of the data type,
OliVe maintains the original programming interface for GPUs. We
can replace the original int-based instruction with OVP-based
instruction (e.g., mmaovp) to easily construct the OVP-supported
DNN quantization framework. Therefore, our OliVe framework
has comprehensive and practical applicability, which is the most
significant advantage of OliVe.
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5 EVALUATION
In this section, we evaluate the LLM’s accuracy with OliVe quanti-
zation. We also demonstrate OliVe’s area overhead, speedup, and
energy efficiency on GPU and systolic array, respectively.

5.1 Methodology

Framework and Evaluation Models. To evaluate our OliVe
quantization framework, we implement it in Pytorch [62]. We eval-
uate BERT-base [19], BERT-large [19], and BART-base [49], the
three most commonly used language models, on eight datasets of
the GLUE benchmark [78]. In addition, we evaluate BERT-base [19]
and BART-base [49] on the summarization tasks SQuAD v1.1 and
SQuAD v2.0 [68]. To valid our quantization framework on large
language models, we also evaluate GPT2-XL [66], BLOOM-7B1 [70],
and OPT-6.7B [90] on Wikitext103 [83] and C4 [20] datasets. For
all models mentioned above, we use state-of-the-art checkpoints
from the huggingface repositories [55].
Quantization Baselines. We compare OliVe with existing quan-
tization works, including GOBO [85], Outlier Suppression [82],
Q8BERT [86], and ANT [32]. Outlier suppression [82] is the state-
of-the-art Transformer quantization work. GOBO [85] is also an
outlier-aware quantizationwork. Q8BERT [86] is amethod for quan-
tizing GEMM operations to 8-bit. ANT [32] is a hardware-friendly
quantization framework that achieves state-of-the-art results in
both performance and accuracy.
Accelerator Baselines. We compare the performance and energy
of OliVe against five DNN quantization accelerators, including
OLAccel [61], AdaptivFloat [76] (shorted as AdaFloat), GOBO [61],
ANT [32], and original int8 tensor cores in GPU [59]. OLAc-
cel [61] first proposed the outlier-aware quantization architecture
for CNNs. We extend OLAccel to the Transformer-based models
with element-wise mixed-precision weight and activation quanti-
zation. AdaFloat [76] extends the float type with a tensor-wise
exponent bias. GOBO [85] is similar to OLAccel, but only supports
the weight quantization for Transformer-based networks.
OliVe Implementation. We implement our decoder in Verilog
RTL and synthesize it with Synopsys design compiler [47] with
a 22 nm TSMC technology library to estimate its area, latency,
and power. We use CACTI [56] to estimate the area and power of
on-chip memories. We integrate OliVe into GPU and hardware
accelerator for the end-to-end performance and energy evaluation.

For the GPU integration and evaluation, we modify and ex-
tend GPGPU-Sim 4.0 [3] and AccelSim [45] with the configura-
tion of NVIDIA 2080 Ti architecture. We use AccelWattch [46],
GPUWattch [48], and CACTI [56] for the energy estimation. The
majority of Transformer layers are matrix multiplication opera-
tions. For GEMM implementation on the tensor core, we use CUT-
LASS [44], which is NVIDIA’s open-source implementation.

For the accelerator evaluation, we compare AdaFloat, OLAccel
and ANT with OliVe. We develop a cycle-level simulator to esti-
mate the overall performance of OliVe based on DnnWeaver [71].
Although DnnWeaver [71] is a FPGA tool set, prior DNN quantiza-
tion accelerators, which include the BitFusion [72], and ANT [32],
have extended its frontend to add the ASIC performance and energy
simulation. As OliVe does not redesign the baseline accelerator

Method Algorithm CoLA SST-2 MNLI QQP MRPC
BERT𝑏𝑎𝑠𝑒 32-bit 59.60 93.35 84.94 90.91 87.75
Ours 4-bit PTQ 59.30 92.43 84.10 90.36 87.99
ANT 4-bit QAT 53.91 92.43 83.45 - -
ANT 4-bit PTQ 42.90 90.48 73.36 78.04 68.87
OS 4-bit QAT 50.56 91.86 83.05 90.33 84.31
OS 6-bit PTQ 54.40 91.86 82.02 88.94 83.33
Q8 8-bit QAT 58.48 92.24 - - -

BERT𝑙𝑎𝑟𝑔𝑒 32-bit 63.35 93.46 86.65 91.07 87.99
Ours 4-bit PTQ 63.99 92.89 84.89 90.14 86.52

BART𝑏𝑎𝑠𝑒 32-bit 56.32 93.35 86.45 91.34 87.50
Ours 4-bit PTQ 54.30 92.89 85.33 91.23 86.76
OS 4-bit QAT 50.83 92.43 84.57 90.93 87.01
OS 6-bit PTQ 44.51 90.94 82.98 88.45 80.88

Table 6: Results on GLUE datasets. Q8 and OS are
Q8BERT [86] and outlier suppression [82] for short, respec-
tively. Prior works do not report results in BERT𝑙𝑎𝑟𝑔𝑒 so we
only compare against the original full-precision model.

architecture, we can directly embed new OliVe-related instructions
and data format in the simulator without breaking the original sim-
ulation flow. In other words, we have used and modified the open-
sourced implementaions of BitFusion [72, 73], and ANT [32, 33].

5.2 Accuracy Results
We first evaluate the accuracy of OliVe quantization framework on
different tasks and datasets, which is the prerequisite for applying
it to reduce the inference cost of large language models (LLMs).
GLUE Dataset. We evaluate BERT-base [19], BERT-large [19] and
BART-base [49] on eight datasets of GLUE benchmark, but due to
space limitation, we only show the results on CoLA, SST-2, MNLI,
QQP and MRPC datasets in Fig. 6. For the BERT-base model, our
4-bit PTQ method accuracy drop less than 1% compared to the
original full precision model on all eight datasets and outperforms
all studied methods including 4-bit, 6-bit, and 8-bit PTQ and QAT
methods. Since GOBO [85] only quantizes weights, we use the
same method to compare with it and the result is shown in Tbl. 7.
Our method also outperforms the GOBO under the weight-only
quantization setting. In addition, we evaluate the BERT-large model,
which is evaluated by few prior quantization works due to the larger
number of parameters and hence much more challenging compared
to BERT-base. The results in Tbl. 6 show the accuracy loss for BERT-
large is around 1% on the five presented datasets and similar results
are found on other datasets. For the BART-base model, our 4-bit
PTQ results in Tbl. 6 show around 2% accuracy loss compared to
the accuracy of original full-precision in all datasets. In the above
evaluation, our 4-bit PTQ results are better than all the PTQ and
most of the QAT results reported by prior works.
SQuAD Dataset. We also evaluate the accuracy of OliVe quan-
tization on summarization task SQuAD [68], which is more chal-
lenging than the previous GLUE dataset. Tbl. 8 shows the results
on SQuAD v1.1 and SQuAD v2.0 datasets. On both datasets, our
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4-bit PTQ method obtains a less than 2% accuracy loss on the BERT-
base model and around 3% accuracy loss on the BART-base model,
which is better than the 6-bit PTQ method of the state-of-the-art
quantization work outlier suppression.

Large Language Models. We evaluate the accuracy of OliVe
for LLMs under the PTQ setting. LLMs’ inference is challenging
as it requires significant memory, which makes their retraining
even more resource-consuming. Thus, the PTQ method without
retraining is more desirable than the QAT method for LLMs.

The recent work [18] has shown that the int8 quantization
has a significant accuracy drop when the number of parameters
of the OPT model grows to 6.7B. As shown in Tbl. 9, our 8-bit
PTQ method has only a negligible perplexity increase on OPT-6.7B
(lower is better), while the accuracy of the int8-based quantization
method has a significant degradation and is worse than our 4-bit
PTQ method on the C4 dataset. On GPT2-XL and BLOOM-7B1
models, our 8-bit PTQ method essentially achieves the original
perplexity, and the 4-bit PTQ method achieves the performance
close to int8. For comparison, the accuracy results of int4 and
4-bit ANT are unacceptable (10-1000× worse than FP32 model).

To summarize, our OliVe quantization framework pushes the
limit of 4-bit quantization to a new state-of-the-art, as it is able to
achieve nearly original accuracy for the commonly used language
models including BERT-base, BERT-large, and BART-base on most
datasets. Moreover, OliVe also gives the state-of-the-art results of
4-bit and 8-bit quantization on large language models like GPT2-XL,
BLOOM-7B1, and OPT-6.7B.
5.3 GPU Performance and Energy
We evaluate LLMs on the GPU simulator, where the batch size is set
to 2 for GPT-like models and 16 for BERT-like models. For OliVe,
4-bit quantization can limit the loss to a relatively small error range.
GOBO [85] can achieve the original accuracy of all models but has
a significant overhead on compressing weight in DRAM. Note that
GOBO only quantizes the weight tensors and computes with FP16.
We implemented GOBO’s memory organization in the GPU. For
ANT [32], we make all models close to the original accuracy or
perplexity by mixed precision (BERT-like models [19, 49] with < 1%
loss and GPT-like models [66, 70, 90] with < 3 perplexity) with the
PTQ setting. In addition, we also compare the original int8 of GPU,
which has unacceptable accuracy loss, just for performance and

Method Bits MNLI STSB(Pear.)
BERT𝑏𝑎𝑠𝑒 32 84.94 89.70
Ours (weights only) 4 84.75 89.62
GOBO∗(weights only) 4 84.45 88.33

Table 7: Comparison with GOBO on the MNLI and STSB
dataset. ∗The accuracy of our GOBO implementation
slightly differs from the number reported in the original pa-
per [85].

Method Bits SQuAD v1.1 SQuAD v2.0
BERT𝑏𝑎𝑠𝑒 32 88.28/80.82 77.34/73.60
Ours 4 86.38/78.16 75.90/72.08
Outlier Suppression 6 84.48/75.53 74.69/70.55

BART𝑏𝑎𝑠𝑒 32 91.63/84.79 80.82/77.41
Ours 4 88.15/79.87 77.37/73.69
Outlier Suppression 6 83.68/75.34 74.44/70.36

Table 8: PTQ results on SQuAD datasets.

energy comparison to GPU baseline. We compare the GPU archi-
tecture integrated with our OliVe design against various baselines.
The performance and energy results are shown in Fig. 9.
Performance. Fig. 9a compares the speedup values of different
quantization methods on GPUs. OliVe achieves the best perfor-
mance and has higher speedups on the larger language models than
GOBO. Due to the FP16 computation and weight-only quantization,
GOBO [85] achieves the lowest performance among all studied
designs. In contrast, OliVe quantizes both activation and weight to
low bits and does not increase the memory access overhead. This
avoids performance degradation when the number of parameters
increases. The PTQ seriously degrades the accuracy of ANT [32] as
it cannot handle outliers. In ANT, 80% of layers ends up using int8
quantization so the performance results between ANT and int8
are close. On average, OliVe achieves 4.5×, 2.7×, and 2.4× speedup
values over GOBO, int8, and ANT, respectively.
Energy. Fig. 9b shows the normalized energy comparison of differ-
ent designs, including constant, static, and dynamic power. And the
dynamic power includes DRAM, L2 cache, L1 data cache, shared
memory, register file, and processing elements (CUDA core and
tensor core). The L1 contains the sum of the L1 cache and shared
memory energy. OliVe has the lowest energy due to the aligned
4-bit design and GPU compatibility. Due to the worse accuracy
result of the mixed precision, ANT is also close to int8 on the
energy. Overall, 4-bit OliVe is very hardware-friendly so that it can
take full advantage of the energy savings with lower bits. OliVe
achieves average 4.0×, 2.3×, and 2.0× energy reduction over GOBO,
int8, and ANT, respectively.
Area. To measure the overhead of OliVe decoder on the GPU, we
scale the OliVe decoder to 12 𝑛𝑚, which is the same manufacturing
process as RTX 2080 Ti [59] and calculate the tile area. According
to Tbl. 5, there are 139,264 4-bit decoders and 69,632 8-bit decoders

Method
GPT2-XL BLOOM-7B1 OPT-6.7B

Wiki C4 Wiki C4 Wiki C4
FP32 17.48 16.30 13.05 14.94 22.14 10.63
int8 18.29 17.35 14.04 16.18 37.45 74.30

8-bit OliVe 17.49 16.37 13.13 15.04 22.34 10.73
int4 1E+4 9E+3 3E+6 9E+6 5E+2 1E+2

4-bit ANT 27.79 27.35 23.22 27.36 4E+4 4E+4
4-bit OliVe 19.11 18.08 15.16 17.18 55.44 32.41

Table 9: PTQ results on large languagemodels. The accuracy
metric is perplexity, and lower is better.
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Figure 9: Comparison of four different designs on GPU.

on the GPU die and their area is shown in Tbl. 10. Since the GPU
die size of RTX 2080 Ti is 754 𝑚𝑚2, the 4-bit decoder and 8-bit
decoder only account for 0.250% and 0.166% of the entire GPU area
respectively, which we believe is a tiny and worthy overhead.

5.4 Accelerator Performance and Energy
As explained in Sec. 5.1, we also integrate OliVe to the systolic-
array-based hardware accelerator and compare its performance and
energy against existing designs of ANT [32], OLAccel [61], and
AdaFloat [76]. Similar to its GPU implementation, ANT is a mixed-
precision design. Since AdaFloat does not support mixed precision,
we only provide the 8-bit quantization results. All accelerators can
achieve close to original accuracy for all Transformer models.
Performance. As shown in Fig. 10a, OliVe has the most signifi-
cant advantage in latency speedup. Owing to its inability to deal
with outliers, the performance of ANT is similar to OLAccel on
most models. The speedup values of OliVe are very similar on all
models, and they do not change with the increasing number of
model parameters. On average, OliVe achieves 4.8×, 3.8×, and 3.7×
speedup value over AdaFloat, OLAccel, and ANT, respectively.
Energy. Fig. 10b shows the normalized energy consumption of
different designs composed of static and dynamic energy (DRAM,
on-chip buffer, and core). OliVe has the lowest energy consumption.
Compared to OLAccel, OliVe has a significant advantage in terms

Component Number Area (𝑚𝑚2) Area Ratio

4-bit Decoder (13.53𝜇𝑚2) 139,264 1.88 0.250%

8-bit Decoder (18.00𝜇𝑚2) 69,632 1.25 0.166%

Table 10: The area of OliVe decoder on RTX 2080 Ti.
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Figure 10: Comparison of different designs on accelerators.

of static and DRAM. Worse mixed-precision results increase ANT
energy consumption, which is even close to AdaFloat in BLOOM-
7B1 model. On average, OliVe achieves 3.7×, 2.1×, and 3.3× energy
reduction over AdaFloat, OLAccel, and ANT, respectively.
Area. Tbl. 11 shows the area breakdown of OliVe-based systolic
array architecture under 22 𝑛𝑚 process. In this scenario, the 4-bit
and 8-bit decoders introduce about 2.2% and 1.5% overhead of the
core area, respectively, which is inconsiderable compared to the
area of PEs in the array. Considering on-chip memory structures,
the overall area overhead would be even smaller. In addition, we
also scale other accelerators to 22 𝑛𝑚 using DeepScaleTool [69] and
get similar results to those numbers. Note that we implement all
accelerators with a similar area size. The small area overhead of our
OliVe directly benefits from the carefully-designed outlier-victim
pair (OVP) encoding.

6 RELATEDWORK AND DISCUSSION
This section presents and discusses research on DNN acceleration
and compression. With the growing computation requirements of
DNN models, it is crucial to design the algorithms and architecture
to accelerate DNN models. Various compression methods, such

Component Number Area (𝑚𝑚2) Area Ratio

4-bit Decoder (37.22𝜇𝑚2) 128 0.00476 2.2%

8-bit Decoder (49.50𝜇𝑚2) 64 0.00317 1.5%

4-bit PE (50.01𝜇𝑚2) 4096 0.205 96.3%

Table 11: Area breakdown of OliVe under 22 𝑛𝑚 process.
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as pruning and quantization, have been proposed to exploit the
redundancy property of DNNs.
DNNAcceleration. In the past few years, various architectures [10,
12, 13, 23, 25, 34, 35, 51, 63, 64, 87, 96] have been proposed to match
the computation characteristics of DNN models. To accelerate the
DNN system, most optimizations focus on compilation [11, 40, 91,
92, 95, 97] and scheduling [8, 9, 15–17, 31, 52–54, 84].

The DNN acceleration highly relies on the performance of ma-
trix multiplication. Therefore, several works focus on improving
data reuse and simplifying control logic through a tailored dataflow
architecture for matrix multiplication[10, 12, 25, 34, 35, 41, 63, 64,
87, 96]. TPU [41] introduces a highly optimized dataflow architec-
ture that efficiently reuses data across multiple computation stages.
Modern GPUs [60] now incorporate matrix multiplication accelera-
tors, such as tensor core, optimized for SIMD operations to enhance
DNN workload acceleration further.
Pruning. Pruning means removing a portion of weight, input, or
output of DNN layers, resulting in a sparse model with reduced
model size. However, a significant reduction leads to irregular mem-
ory accesses, which are negative for the acceleration of inference
and training. To address this issue, researchers propose several
sparse optimizations in algorithms and hardware architectures to
reduce inefficient computation [2, 26–29, 36, 64, 65, 80, 89, 94, 98].
In addition, a sparse tensor core is introduced in NVIDIA Ampere
GPU architecture [1] to support the 2:4 structured sparsity.
Quantization. Quantization is another effective and efficient way
to reduce the DNN model size and computation burden. There are
two popular quantization methods, i.e., quantization-aware training
(QAT) [38, 50, 81, 99] and post-training quantization (PTQ) [30, 35,
38, 81]. QAT allows the model to adapt to quantization noise by
retraining. PTQ is very effective to implement since it converts the
original FP32 model directly into a lower-bit model without the
training data and pipeline. Thus, PTQ is more feasible for language
models at billion scales.

By quantizing data to low bit-width, quantization accelerators
can significantly reduce memory bandwidth requirements and in-
crease the computation speed. BitFusion [72] combines the low-bit
PEs to support different bit-width quantization. OLAccel [61] uti-
lizes 16-bit MAC to the first layer and 4-bit MAC to other layers.
DRQ [75] quantizes data in sensitive and insensitive areas with
different precision, which is similar to outlier-aware quantization.
GOBO [85] is an accelerator that takes advantage of outlier-aware
quantization, which quantizes the outliers of weights with higher
precision. However, the outlier-aware quantization accelerators
mentioned above have unaligned memory accesses, resulting in
additional overhead and a limited computing speed. ANT [32] pro-
poses a fixed-length adaptive quantization framework but only
takes the distribution of tensors into account and ignores the im-
portance of outliers. In contrast, our proposed novel OliVe quanti-
zation framework can handle outlier values in a memory-aligned
and hardware-friendly way.

AdaptivFloat [76] is similar to abfloat in adding a bias to the
exponent, but the motivations and how the bias is determined are
different. AdaptivFloat is to adapt to the dynamic ranges of different
layers and calculates the optimal bias at a layer granularity using its

algorithm. Our abfloat is to make full use of the encoding range,
so it simply adds a uniform bias to all encoding values to skip the
range of normal values, which is simpler to implement.
GPU Architecture. NVIDIA has been updating its new genera-
tions of GPUs, e.g., Ampere architecture [1], which adds the sparse
tensor core for structured sparsity in DNNs and compute data com-
pression to increase the memory access bandwidth. The structured
sparsity for tensor cores is orthogonal to our proposed quantization
as our element-wise quantization does not affect (sparse) tensor
core dataflow. Ampere GPU’s compute data compression can com-
press zero values and similar bytes in DRAM and L2 cache. As such,
it is lossless and therefore general-purpose. It is also transparent and
orthogonal to OliVe, which does not modify the memory system.
In contrast, prior quantization work [85] perform compression at
the DRAM-level, which could be impacted by the data compression
in Ampere GPUs.

On the other hand, DNN quantization is a lossy compression.
We believe the strictly lossless compression would have limited
benefits for DNN quantization. Thus, our work could complement
Ampere’s current compute data compression as a special-purpose
solution. Since existing GPU simulators [3, 45] cannot support data
compression, we will continue to follow up and study this problem
in the future work.

7 CONCLUSION
In this work, we propose a novel outlier-victim pair (OVP) quantiza-
tion, which can handle outlier values with low hardware overhead
and achieve high performance gains. The key insight is to sacrifice
the normal values next to those essential outliers (called victims)
to accommodate them. The OVP encoding designed based on this
idea is able to make outliers and normal values globally identical
but locally distinguishable. To the best of our knowledge, OliVe
pushes the limit of 4-bit quantization to a new state-of-the-art, as it
is able to achieve nearly original accuracy for commonly used lan-
guage models. Moreover, our architecture design can be efficiently
integrated into existing hardware accelerators such as tensor core
and systolic array. Finally, OliVe-based accelerator surpasses the
existing outlier-aware accelerator, GOBO, by 4.5× speedup and 4.0×
energy reduction, respectively.
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