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Abstract
In Large Language Models (LLMs), outliers are identified by a

small number of values with exceptionally high magnitudes, criti-
cally affecting model accuracy. Researchers have proposed several
mixed-precision quantization techniques to manage these activa-
tion outliers. These approaches, employing value-wise outlier gran-
ularity, face challenges in balancing model accuracy with hardware
efficiency. To address this issue, we capitalize on the observation
that activation outliers of LLMs typically cluster within specific
channels. Consequently, we introduce Oltron, a comprehensive
software/hardware co-design strategy for outlier-aware quanti-
zation of LLMs with inter-/intra-layer adaptation. Our method in-
cludes three key innovations: firstly, a novel quantization algorithm
that identifies the optimal ratio of outliers across different layers
and channel groups within a layer; secondly, a reconfigurable ar-
chitecture that adapts to inter- and intra-layer distributions; and
thirdly, a tile-based dataflow optimizer that intricately arranges
complex computations and memory access for mixed-precision
tensors. Oltron outperforms the state-of-the-art outlier-aware ac-
celerator, OliVe, achieving a 1.9x performance boost and 1.6x greater
energy efficiency, while also enhancing model accuracy.
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1 Introduction
Transformer-based large language models (LLMs) have demon-

strated great success [17]. However, their remarkable performance
comes with exceptional model size and computational requirements.
For instance, deploying the GPT-175B model for inference in FP16
consumes at least 350GB of storage, which requires at least 5 ×
80GB A100 GPUs [1]. Quantization [2, 4, 5, 13, 18, 20–22] is one of
the most effective ways to reduce the inference cost of LLMs. By
∗The corresponding authors: Chen Zhang, chenzhang.sjtu@sjtu.edu.cn; Guangyu Sun,
gsun@pku.edu.cn.
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Table 1. Comparison between outlier-aware accelerators and our
proposed method Oltron.

Architecture OLAccel
[10]

OliVe
[5]

Oltron
(Ours)

Outlier Granularity Value Value Channel
Accuracy Outlier Bit-Width 16 4 8/12/16

Efficiency

Avg. Index Bit-Width 16 4 ≈ 0
Aligned Memory Access ✗ ✓ ✓

Outlier PE Ratio 1/16 1 1/8
Overhead Area Ratio 71% 0.2% 0.1%

quantizing the weights and activations into low bit-width, the de-
mands for both memory size and bandwidth can be greatly reduced,
and compute-intensive operations can be accelerated.

Currently, the weights of LLMs can be quantized to 4-bit with
minimal impact on model accuracy [3]. However, activation quanti-
zation of LLMs remains challenging, primarily due to outlier issues
[2, 21]. The small fraction of activation values feature extremely
large magnitudes and predominant impacts on model accuracy,
which makes it difficult to apply low bit-width (4-bit) activation
quantization without sacrificing model accuracy [13, 18, 20–22].

To maintain model accuracy, previous works have proposed
outlier-aware quantization with dedicated hardware support, such
as OLAccel [10] and GOBO [23]. These methods employ mixed-
precision quantization, where low-bit (4-bit) quantization is applied
to the majority of normal values, while high precision (16-bit) is
reserved for the outliers. This approach achieves a nearly average
4-bit quantization with negligible accuracy loss. However, they
treat outliers as sparse matrices, requiring additional codebooks
for sparse format and complex control logic to handle irregular
computations and memory accesses. OliVe [5], on the other hand,
introduces outlier-victim pair (OVP) encoding with localized out-
lier storage, ensuring aligned memory access with minimal control
overhead. Nevertheless, the localized outlier encoding scheme has
limitations in extending the bit-width for outliers, resulting in in-
sufficient precision in LLMs. Moreover, to locally process outlier
values with random occurrence, OliVe augments all computing
units with the capability to handle outlier values, which compro-
mises hardware efficiency.

The aforementioned outlier-aware accelerators handle outliers
at value-wise granularity, and struggle to balance model accuracy
and hardware efficiency. In this work, we aim to strike such balance
by handling activation outliers of LLMs at channel granularity. We
leverage the observation that activation outliers are not distributed
in complete randomness, but instead tend to cluster in specific
channels [2, 20]. By handling outliers at coarser granularity, we
can still maintain model accuracy with low average bit-width and
efficient hardware design.

We introduce Oltron, a holistic quantization framework that
encompasses algorithm-software-hardware co-optimization to ef-
fectively handle outlier activation channels while simultaneously
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ensuring hardware efficiency. We commence by conducting a thor-
ough analysis of outlier distribution patterns, shedding light on
the channel-wise non-uniform distribution with intra-/inter-layer
heterogeneity. To tackle intra-layer heterogeneity, we introduce the
Tile-wise Outlier-Balanced Encoding (TOBE) format. TOBE consis-
tently guarantees dataflow regularity and incurs minimal encoding
costs through compilation-time optimizations. To address inter-
layer heterogeneity, we co-design TOBE with an adaptive quanti-
zation algorithm and a reconfigurable architecture, which enables
flexible adjustment of TOBE settings to meet the precision require-
ments of each layer, while allowing for efficient TOBE acceleration.
Our evaluation results show that Oltron achieves superior excels in
both quantized model accuracy and hardware efficiency. Compared
to state-of-the-art outlier-aware accelerators, Oltron’s accelerator
design surpasses existing outlier-aware accelerators, OLAccel [10]
and OliVe [5], by 3.6× and 1.9× performance improvement, and
1.9× and 1.6× energy reduction, respectively.

The main contributions of this paper are as follows:
• We introduce Tile-wise Outlier-Balanced Encoding (TOBE) for-
mat for LLM activation quantization, which encodes outlier
channels with high precision while consistently maintaining
dataflow regularity.
• We propose Oltron, a TOBE-based quantization framework
integrated with software-hardware co-optimization, to fully
harness the adaptability of TOBE to the inter-/intra-layer het-
erogeneity of outlier channel distribution.
• Wepropose efficient implementation of Oltron’s reconfigurable
architecture complemented by compilation & algorithm sup-
port, and demonstrate that the accuracy and efficiency of Oltron
outperform existing outlier-aware quantization algorithms and
hardware accelerators.

2 Background & Motivation

In this section, we first review previous works dealing with the
activation outlier challenge of LLMs. Our proposed channel-wise
outlier-aware quantization aims to balance accuracy with efficiency.
However, given the non-uniform distribution of outlier channels
detailed in Sec. 2.2, it remains challenging to maintain regular com-
putation and memory access, and thereby, to provide hardware effi-
ciency. To tackle this challenge, we introduce a software-hardware
co-design solution termed as Oltron, and present its framework
overview in Sec. 2.3.

2.1 Related Works

Previous works [5, 10, 13, 18, 20, 23] propose various quantiza-
tion/architecture co-design methods to tackle the activation out-
lier challenge of LLMs. Some quantization algorithms [13, 18, 20]
smooth out activation distribution by scaling down outlier mag-
nitudes, so that the tensor can be uniformly quantized. However,
encoding outlier values with the same low bit-width as normal
values cannot provide enough precision, consequently leading to
degraded model accuracy. In addition, some outlier-aware architec-
tures [5, 10, 23] are proposed to encode outliers with high precision
andmaintainmodel accuracy. For instance, OLAccel [10] andGOBO
[23] store high-precision outliers separately from normal values,
and employ dedicated processing units for the outliers. However,
the outlier storage has variable length due to random occurrence
of outliers, which results in unaligned memory access, Moreover,
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Figure 1. Input activation distribution of linear layers from LLaMA-
65B. For illustration, channels of > 2× median magnitude are
deemed salient. (a) and (b) are high-level views resized with max-
pooling. (c-d) / (e-f) are zoom-in views of (a) / (b), respectively.

the separated outlier storage requires complex control logic to in-
dex outliers and orchestrate the computation between normal &
outlier values. In contrast, OliVe [5] locally stores outlier values,
and allocates co-located bit-width for indexing. OliVe manages to
achieve aligned memory access and negligible control overhead.
However, it can only extend limited bit-width to represent outlier
values, which also suffers from insufficient precision and model
accuracy loss. Moreover, in accommodation to outlier values with
local storage and random occurrence, OliVe extends all comput-
ing units to enable outlier processing, which adversely impacts its
hardware efficiency.
2.2 Outlier Distribution Characteristics

Fig. 1 visualizes the input activation distribution of two represen-
tative linear layers in the LLaMA-65B model. We randomly sampled
128 sequences from Wikitext2 dataset [8]. For every input channel,
we recorded the maximum absolute value across all tokens. From
these figures, we observe some intriguing characteristics of out-
lier distribution, namely: the presence of salient channels, and the
inter-/intra-layer heterogeneity of outlier distribution.

Salient Channels refers to the ones with significantly larger
magnitudes than most of other channels. The saliency of these
channels is reflected in two aspects. Firstly, they tend to have larger
quantization errors than normal channels under the same bit-width.
Secondly, quantizing salient channels alongside normal channels
results in either clamping of the former or substantial rounding
errors in the latter, both resulting in model accuracy losses.

Inter-Layer Heterogeneity refers to the observation that dif-
ferent layers exhibit significantly different composition ratios of
salient channels. For instance, as shown in Fig. 1(b), the MLP con-
traction layer contains a considerably higher number of outlier
channels compared to the attention input projection layer depicted
in Fig. 1(a). Therefore, we categorize the former as an outlier-rich
layer and the latter as an outlier-scarce layer.

Intra-LayerHeterogeneity refers to the observation that salient
channels are randomly distributed within a layer, resulting in vari-
ous salient channel proportions across channel groups. In Fig. 1(c-f),
significant distribution variances are evident among four distinct
channel groups from the two selected layers, each comprising 128
channels. Some groups, such as those in Fig. 1(c), are entirely de-
void of outliers, while others, like those in Fig. 1(f), exhibit a larger
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Figure 2. Oltron’s framework overview.

proportion of salient channels, with the remaining groups falling
somewhere in between.
2.3 Framework Overview

To address the efficiency challenges arised from inter-/intra-layer
heterogeneity, we introduce a novel representation format called
Tile-wise Outlier-Balanced Encoding (TOBE). TOBE supports encod-
ing salient channels with arbitrary proportion and unrestricted pre-
cision, while maintaining storage regularity. To efficiently harness
the flexible expressiveness of TOBE, we introduce Oltron, a versa-
tile and reconfigurable quantization framework empowered with
software-hardware co-optimization. As for software, Oltron uti-
lizes an adaptive quantization algorithm to reduce mixed-precision
overhead without compromising encoding precision, and leverages
dedicated compilation support to achieve negligible encoding over-
head. As for hardware, Oltron adopts an efficient accelerator design
to support TOBE-based dataflow, with runtime reconfigurability
to accommodate TOBE with various salient channel proportion &
precision settings. The specific contents of the framework and their
corresponding chapters are summarized in the Fig. 2
3 Software Design

In this section, we first present details of TOBE that balances
the distribution of outlier channels. TOBE features the capability to
keep computation and memory access regular without sacrificing
outlier’s high precision encoding. Since operators are connected
through tensors, i.e. one operator’s output is another operator’s
input, we propose a TOBE-aware dataflow optimization that opti-
mizes the memory-related layout conversion operations across the
whole computation graph. Finally, based on TOBE, we propose an
adaptive quantization algorithm that automatically selects salient
channel configurations to determine the best trade-off between
mixed-precision overhead and model accuracy.
3.1 Tile-wise Outlier-Balanced Encoding

To execute large tensor operators in LLMs, tiling is a must to split
computations and associated input tensors into sub-blocks, allow-
ing efficient caching in on-chip memory. However, mixed-precision
quantization may not integrate well with the tiling approach. To
encode the mixed-precision tensor, a straightforward approach is
to store outliers in their original positions (Fig. 3(a)). As outliers
require additional encoding bit-width, this method results in irreg-
ular tensor storage and inconsistent data tile sizes. Such imbalance
leads to unaligned memory access and under-utilization of on-chip
resources, and ultimately reduced achievable performance. The
split scheme [10, 23] addresses the memory alignment challenge by
separating sparse outlier encoding to ensure uniformity of normal
tiles (Fig. 3(b)), yet the problem persists for the variable-length out-
lier encoding. It also introduces complicated control overhead to
manage the separately stored and computed normal/outlier values.
To achieve memory alignment with reduced control overhead, the
outlier-victim pair encoding [5] improves upon the original scheme.
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Figure 3. Comparisons between different encoding format.

It prunes the victim values adjacent to the outliers, and allocates
the saved bit-width for extended outlier representation (Fig. 3(c)).
However, this approach only offers limited bit-width expansion for
outliers, resulting in constrained precision of outlier representation,
and ultimately impacting the model’s accuracy.

TOBE achieves regularmemory access pattern by adjusting preci-
sion at channel granularity, and reordering high precision channels
to ensure balanced sizes of tiled sub-blocks, which greatly reduces
the complicated control logic required for the sparse outlier values
(Fig. 3(d)). As opposed to handling outlier values individually in
previous encoding schemes, TOBE encodes salient channels with
severe outlier issues at high precision. Regarding the observed intra-
layer random distribution of salient channels (Fig. 1), to achieve
balanced tile sizes, TOBE evenly distributes salient channels into
tiled sub-blocks by reordering the channel permutation. Since on-
chip buffer accesses off-chip memory in units of data tiles, TOBE’s
uniform data tile sizes ensure regular off-chip memory access. In
addition, within each tiled sub-block, the assigned salient channels
are placed at the forefront. The determined and consistent data
layout of tiled sub-blocks ensures that on-chip memory access and
computation can proceed in a regular manner.

Oltronmainly applies TOBE on input activation tensors of linear
layers that exhibit significant outlier problems. To guarantee the
correctness of the matrix multiplication results, given the reordered
channel permutations of activation tensors, we also need to reorder
the input channels of weight tensors correspondingly, as shown
in Fig. 4(a). As the salient channels are selected based on their
extreme magnitudes on calibration data, the channel permutations
are predetermined. Therefore the rows of weight tensors can be
permuted statically before deployment.
3.2 Dataflow Optimization

TOBE reorders the tensor layout tile-wise in memory to enhance
intra-layer computation efficiency. However, this encoding necessi-
tates an explicit reordering operation to prepare the data because
the output of the previous operator is not inherently encoded in
TOBE, as shown in Fig. 4. To mitigate the overhead introduced
by the reordering operation, we propose dataflow optimization
with two strategies applied to the computation graph, indicated by
circled numbers ❶-❹ in Fig. 4.

First, we leverage the inherent commutative characteristics in
matrix multiplications. In a ⟨𝑀 × 𝑁 × 𝐾⟩ matrix multiplication,
the reordering operation can be directly applied to the previous
layer’s output. For example, reordering rows in the𝑀 dimension
or columns in the 𝑁 dimension does not influence the final results.
Moreover, if the layers between the twomatrix multiplication layers
also exhibit commutative characteristics, such as element-wise
operators (activation layers), this reordering strategy can propagate
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Algorithm 1 Adaptive Quantization Algorithm
Input: activation statisticsM = {𝑀 ∈ R#batch×𝑑𝑙 |1 ≤ 𝑙 ≤ 𝐿}, storage budget 𝐵∗ ∈ R;
Output: salient channel sets S = {𝑆𝑙 |𝑆𝑙 ⊆ {1, 2, · · ·𝑑𝑙 }, 1 ≤ 𝑙 ≤ 𝐿}, layer-wise salient
channel data types ®𝑡 ∈ T𝐿 ;

1: for layer 𝑙 ∈ {1, 2, · · · , 𝐿} do
2: 𝜏𝑙 ← 3 × Standard-Deviation(𝑀𝑙 )
3: 𝑡𝑙 ← FP8
4: while target budget 𝐵∗ not reached do
5: ⟨𝑒, 𝐵⟩ ← Estimate-MSE-And-Budget(M, ®𝜏, ®𝑡 )
6: 𝑖 ← −∞
7: 𝑇 ← Considered-Modification( ®𝜏, ®𝑡 )
8: for ⟨ ®𝜏′, ®𝑡′ ⟩ ∈ 𝑇 do
9: ⟨𝑒′, 𝐵′ ⟩ ← Estimate-MSE-And-Budget(M, ®𝜏, ®𝑡 )
10: 𝑖′ ← Estimate-Improvement(𝑒 − 𝑒′, 𝐵 − 𝐵′)
11: if 𝑖′ > 𝑖 then
12: ⟨𝑖, ®𝜏, ®𝑡 ⟩ ← ⟨𝑖′, ®𝜏′, ®𝑡′ ⟩
13: S ← Select-Salient-Channels(M, ®𝜏)
14: Return S, ®𝑡

through them. Two cases, layers 𝑄𝑝𝑟𝑜 𝑗 (❷) and 𝐹𝐶2 (❹), illustrate
situations where we can eliminate explicit reordering operators by
statically permuting the columns of previous layers’ weight tensors.

Second, we use a kernel fusion method to merge the reordering
operation with the previous layer. For 𝑄𝑝𝑟𝑜 𝑗 /𝐾𝑝𝑟𝑜 𝑗 /𝑉𝑝𝑟𝑜 𝑗 (❶) and
𝐹𝐶1 (❸), we fuse them into previous LayerNorm operators, where
each output channel is redirected to a different address in the off-
chip memory to match the TOBE format of the next layer’s output.

We implement this dataflow optimization in the framework’s
compilation pass. We traverse the entire computation graph, exam-
ining every pair of linear layers (e.g., FC1 and FC2). We also analyze
the operators directly connected between them (e.g., activation lay-
ers) and apply the two aforementioned strategies to eliminate any
additional memory access caused by explicit reordering operations.

3.3 Adaptive Quantization Algorithm

Oltron adopts mixed-precision quantization at the granularity
of channels. In this approach, data within each channel is encoded
in either low-precision or high-precision format. Normal channels
use a 4-bit uniform encoding. For salient channels, we allow the
algorithm to automatically select from multiple high-precision data
type candidates, including fp8, fp12, and fp16.

Our algorithm automatically determines two key factors: (1) the
composition ratio of salient channels relative to normal channels
and (2) the most suitable bit-width for salient channels. It begins
with an initial budget parameter, denoted as ⟨𝐵∗ ∈ R⟩, and a set
of parameters ⟨®𝜏 ∈ R𝐿, ®𝑡 ∈ T𝐿⟩. The budget 𝐵 represents the tar-
get averaged bit-width of the mixed-precision models. We use ®𝜏
to classify values as outliers or normal values, which is initialized
based on an empirical 3𝜎 rule [19], and ®𝑡 to specify the data types
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Figure 5. Overview of Oltron architecture.

to be used for high-precision channels. With these inputs, our algo-
rithm tunes the ⟨®𝜏, ®𝑡⟩ parameters to control the ratios of outliers
to normal values in each layer. In each iteration, we determine the
remaining budget by comparing the current average bit-width 𝐵
with the target budget 𝐵∗. Based on this comparison, we either as-
sign more channels as outliers or recall outliers back. We determine
the changes to the outlier ratio in each layer by calculating the
mean squared error (MSE) 𝑒 between the original and post-change
values. The algorithm continues iterating until it reaches the target
bit-width 𝐵∗.

4 Architecture Design
In this section, we present Oltron’s efficient and reconfigurable

architecture. Our hardware design efficiently supports TOBE-based
dataflow by leveraging the regularity merit of TOBE, and incorpo-
rates reconfigurable components to flexibly accommodate various
TOBE settings.
4.1 Architecture Overview

Fig. 5 presents the overview of Oltron’s architecture. It con-
sists of a weight-stationary systolic array with hybrid PE designs,
on-chip buffers for input/weight/output, an accumulation unit, a
control unit, and decoders. Oltron architecture adopts a 4-stage
pipeline similar to Google’s TPU [6]: (1) Reading Off-chip Mem-
ory: The weight/input buffer loads outlier-balanced data tiles from
off-chip memory. (2) Preloading: Given the salient channel con-
figuration of the input tile, weight tiles are preloaded accordingly,
and the control unit propagates control signals to decoders. (3) Ma-
trix Multiplication: Data of input/output channels flows in the
corresponding PE array columns/rows, respectively. The Multiply-
And-Accumulate (MAC) operations for normal and outlier values
can be concurrently and seamlessly executed on-chip, since both
normal and outlier input values utilize the same quantization scale,
and their multiplication results are stored in a unified integer for-
mat. In this sense, Oltron does not require complex control logic
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to manage normal & outlier value computation. (4) Writing Off-
chip Memory: Finally, the output buffer writes the accumulated
output tile back to off-chip memory.

4.2 PE design

Oltron’s architecture utilizes a hybrid-PE design, which features
the majority of PEs with a simplistic design to enhance efficiency,
and the minority of PEs with a flexible design to provide adaptivity.
The Efficient PEs (Fig. 6a) can only support signed int4×int4
multiplication with limited accumulation bit-width (16-bits), re-
sulting in better energy efficiency and reduced area. The Flexible
PEs (Fig. 6b) are modified atop the efficient PE design for better
flexibility. First, we augment the 4-bit multiplier to support both
signed and unsigned input operands. The original 4-bit input inte-
ger register is extended with an extra sign bit to accommodate the
modification. Second, to support int×fp multiplication, we add
a shifter controlled by a 5-bit input exponent. Finally, we extend
the accumulation bit-width to 32 to capture the highly dynamic
range of fp inputs. With the above modification, each flexible PE
can support int4×fp8 (E5M2), and multiple flexible PEs can be
composed to support fp inputs with more mantissa bits [15].

4.3 Decoder Design

Oltron employs a reconfigurable decoder design to support the
processing of a mixture of data types, including int4, fp8, and fp12.
Our current decoder design supports up to 12-bit fp precision, as
we find that fp12 can achieve comparable accuracy results to those
of fp16 on the tested LLMs. However, it is feasible to extend current
design to support higher fp precision if necessary.

With a specified data type, the decoder accesses on-chip buffer
accordingly. It loads 1 byte (two int4) or 2 bytes (two fp8 or one
fp12 padded with 4 bits) when accessing on-chip buffer (Fig. 7(a)).
The decoder also converts the fetched data into a unified exponent-
integer pair format to simplify subsequent computation. For int4,
the decoder simply fills the exponent fields with zeros, and the
integer fields with the input values (Fig. 7(b)). For fp, it decodes
each input value into exponent-integer pair with equation Eq. (1):

sign × (1 << mb + mantissa) << (exponent − bias) (1)
where mb is the mantissa bit-width. To calculate the effective expo-
nent, the constant bias is properly selected to avoid any fractions
in integer fields, and overflow-proof subtraction module is adopted
to avoid unexpected extremely large values. To calculate the inte-
ger, it requires 4 bits for fp8 with𝑚𝑏 = 2, or 8 bits for fp12 with
𝑚𝑏 = 6 to represent the result. The converted exponent-integer
pair of fp8 can fit into the activation buffer of a single flexible
unit (Fig. 7(c)); while that of fp12 cannot. Therefore, we decom-
pose fp12’s exponent-integer pair into two sub-pairs, and use two
flexible PEs to collaboratively execute MAC operations (Fig. 7(d)).
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Figure 7. Oltron Decoder Design.

5 Evaluation
In this section, we evaluate Oltron in terms of model accuracy,

performance, and energy efficiency.
5.1 Methodology
Quantization Setup Our method is evaluated on LLaMA(7B-65B)
[16] and OPT(6.7B-66B) [24] families. We evaluate the perplexity
of language generation on WikiText2 [8] and C4 [11] datasets.
QuantizationBaseline We compare Oltronwith existingweight-
activation quantizationworks, including OmniQuant [13] and OliVe
[5]. For Oltron, we quantize weight tensors with GPTQ [3]. All the
PTQ quantization methods use 128 randomly sampled calibration
sequences from WikiText2 [8].
Accelerator Baseline We compare the performance and energy of
Oltron against two outlier-aware DNN quantization accelerators,
including OLAccel [10] and OliVe [5]. We use quantized model with
perplexity close to original as benchmark workload.
Architecture Implementation We implement the Oltron PE
and decoder described in Sec. 4 with the Verilog RTL. We use Syn-
opsys DC [7] and TSMC-28nm PDK to synthesize the designs and
estimate the area, latency, and power. We use CACTI [9] to estimate
the area and power of memories. We develop a cycle-level simulator
based on DnnWeaver [14] to estimate the overall performance. We
use DeepScaleTool [12] to scale all designs to the same process for
iso-area comparison.
5.2 Accuracy Result

We first evaluate the quantized model and report the perplex-
ity. We focus on 4-bit quantization, since near-lossless accuracy is
achievedwith higher bit-width in previousworks [13, 20]. As shown
in Tbl. 2, Oltron outperforms existing methods on various models.
OliVe can only extend limited bit-width to encode outlier values,
which leads to significant accuracy losses. OmniQuant smoothes ac-
tivation distribution to encode all values with int4, which achieves
comparable accuracy with Oltron on small models, but falls short
in maintaining accuracy on larger models. The comparative results
indicate that Oltron’s capability to maintain high-precision outlier
quantization can effectively preserve LLMs’ model accuracy. We
also report the perplexity results of Oltron with uniform TOBE
configuration across all layers. Under the same storage budget, the
adaptive quantization algorithm described in Sec. 3.3 consistently
outperforms the uniform counterpart.
5.3 Accelerator Performance and Power
Area We compare the accelerator area breakdown in Tbl. 3. All the
accelerators use the same on-chip buffer configuration and similar
core area. Oltron integrates more PEs within similar core area than
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Table 2. Perplexity results of quantized model on Wikitext2 and C4 datasets (lower is better).
Model/PPL↓ LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-65B OPT-6.7B OPT-13B OPT-30B OPT-66B
Method A bits WIKI C4 WIKI C4 WIKI C4 WIKI C4 WIKI C4 WIKI C4 WIKI C4 WIKI C4
FP16 16 5.68 7.08 5.09 6.61 4.10 5.98 3.53 5.62 10.86 11.74 10.12 11.19 9.56 10.69 9.34 10.28
Olive 4 144.78 117.49 42.24 43.13 36.55 33.78 1.4e7 1.8e7 107.15 61.24 416.57 994.64 334.7 572.02 4058.83 2926.87

Omniquant 4 11.26 14.51 10.87 13.78 10.33 12.49 9.17 11.28 12.24 13.56 11.65 13.46 10.60 11.89 10.29 11.35
Oltron* 4.01 126.81 92.50 185.50 170.75 164.97 357.00 30.61 45.73 16.63 16.26 13.41 14.66 11.20 12.68 151.48 190.71
Oltron 4.01 36.47 44.62 144.08 100.18 439.25 131.15 15.85 20.85 12.69 13.58 11.49 12.53 10.72 11.87 11.61 11.71
Oltron* 4.1 14.47 16.80 9.48 12.42 7.51 9.42 6.69 9.41 11.99 13.04 11.61 12.42 10.64 11.67 10.50 11.09
Oltron 4.1 11.67 15.21 8.20 10.84 6.68 8.65 5.82 8.19 12.00 13.02 11.35 12.27 10.51 11.63 10.49 11.05

* Use the same salient channel configuration across all layers.

Table 3. The configuration and area breakdown of Oltron and
other baselines.

Architecture PE Number Core Area Buffer
Oltron 4096 0.322𝑚𝑚2

512 KB
4.2𝑚𝑚2OliVe 2048 0.318𝑚𝑚2

OLAccel 1152 0.320𝑚𝑚2
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Figure 8. Comparison of different accelerator designs.

OliVe, since the synthesized area of OliVe’s PE is ≈ 2× larger than
Oltron’s efficient PE design. Similar to OliVe, Oltron’s decoding
logic placed alongside the array incurs negligible area overhead.
While the complex control logic of OLAccel takes up a large portion
of the total area, which constrains computational power.
Performance Fig. 8a shows the normalized latency of different
designs on various models. Leveraging the higher computational
power and reconfigurability, Oltron exhibits superior performance
than the baseline designs. On average, Oltron achieves 1.9× and
3.6× speedup values over OliVe and OLAccel, respectively.
Energy Fig. 8b shows the normalized energy of different designs.
We collect the static energy and dynamic energy (DRAM, on-chip
buffer, and core). Compared with the baseline designs, Oltron con-
sumes the least static energy due to better performance. Oltron also
has lower dynamic energy of cores, owing to the simple design of
the majority of PEs. Overall, Oltron achieves 1.6× and 1.9× energy
reduction values over OliVe and OLAccel, respectively.
6 Conclusion

In this paper, We propose Oltron, a holistic outlier-aware quan-
tization framework for accelerating LLMs. The key insight is to
encode outlier channels at high precision while maintaining rep-
resentation regularity unaffected by non-uniform outlier channel
distribution. For intra-layer heterogeneity, we propose Tile-wise
Outlier-Balanced Encoding (TOBE) with consistent regular mem-
ory access and computation pattern. For inter-layer heterogeneity,

we propose Oltron, which integrates adaptive quantization algo-
rithm and reconfigurable hardware to accommodate each layer’s
precision requirement with minimum overhead. Oltron pushes the
limit of LLM post-training quantization to a new state-of-the-art.
Moreover, Oltron’s design surpasses existing outlier-aware accel-
erator, OliVe, by 1.9 × performance improvement and 1.6× energy
efficiency improvement.
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