
SynGPU: Synergizing CUDA and Bit-Serial Tensor
Cores for Vision Transformer Acceleration on GPU

Yuanzheng Yao1, Chen Zhang1*, Chunyu Qi1, Ruiyang Chen1, Jun Wang2, Zhihui Fu2,
Naifeng Jing1, Xiaoyao Liang1, and Zhuoran Song1*

1Shanghai Jiao Tong University, Shanghai, China
2OPPO Research Institute

1{yzh yao, songzhuoran}@sjtu.edu.cn

Abstract—Vision Transformers (ViTs) have demonstrated re-
markable performance in computer vision tasks by effectively ex-
tracting global features. However, their self-attention mechanism
suffers from quadratic time and memory complexity as image
resolution or video duration increases, leading to inefficiency on
GPUs. To accelerate ViTs, existing works mainly focus on pruning
tokens based on value-level sparsity. However, they miss the
chance to achieve peak performance as they overlook the bit-level
sparsity. Instead, we propose Inter-token Bit-sparsity Awareness
(IBA) algorithm to accelerate ViTs by exploring bit-sparsity from
similar tokens. Next, we implement IBA on GPUs that synergize
CUDA and Tensor Cores by addressing two issues: firstly, the
bandwidth congestion of the Register File hinders the parallel
ability of CUDA and Tensor Cores. Secondly, due to the varying
exponent of floating-point vectors, it is hard to accelerate bit-
sparse matrix multiplication and accumulation (MMA) in Tensor
Core through fixed-point-based bit-level circuits. Therefore, we
present SynGPU, an algorithm-hardware co-design framework,
to accelerate ViTs. SynGPU enhances data reuse by a novel data
mapping to enable full parallelism of CUDA and Tensor Cores.
Moreover, it introduces Bit-Serial Tensor Core (BSTC) that
supports fixed- and floating-point MMA by combining the fixed-
point Bit-Serial Dot Product (BSDP) and exponent alignment
techniques. Extensive experiments show that SynGPU achieves an
average of 2.15× ∼ 3.95× speedup and 2.49× ∼ 3.81× compute
density over A100 GPU.

I. INTRODUCTION

Recently, attention-based models in the form of Vision
Transformers (ViTs) [1] have achieved exceptional perfor-
mance in the field of computer vision (CV) tasks such as image
classification [2], object detection [3], and video recogni-
tion [4]. Compared to traditional convolutional neural network
(CNN) models, ViTs leverage their ability to extract global
features effectively, offering both enhanced performance and
greater flexibility in diverse applications.

However, the achievements of ViTs are at the cost of ineffi-
ciency. As is well known, the self-attention mechanism in ViTs
exhibits quadratic time and memory complexity with respect to
the number of input tokens. Consequently, as image resolution
or video duration increases, the computational performance
of ViTs on GPUs deteriorates significantly. To address this
limitation, various approaches have been proposed [5]–[8],

∗ Zhuoran Song and Chen Zhang are corresponding authors.
This work is partly supported by the National Natural Science Foundation

of China (Grant No.62202288)

focusing on reducing value-level redundancy by exploiting
token similarity across image patches or video frames. Beyond
value sparsity, our analysis reveals that bit-level redundancy
offers an opportunity to further enhance the computational
efficiency of ViTs.

As illustrated in Fig. 1, adjacent image pixels often manifest
similar values, leading to many 0-bits in their differences.
Building on this observation, we propose an Inter-token
Bit-sparsity Awareness (IBA) algorithm that calculates the
distances between input tokens and computes token differ-
ences by subtracting similar pairs. These token differences
demonstrate increased bit-level sparsity, which can be effec-
tively leveraged to accelerate computations. To implement
this strategy on GPUs, we utilize the two inherently separate
computing cores within the GPU: CUDA Cores and Tensor
Cores, utilizing their complementary functions to enhance
the efficiency of ViTs by harnessing bit-level sparsity.

P1 P2 P3 P4

P5 P6 P7 P8

LD/ST Units Register File

Tensor Core

Warp Scheduler

Leverage

x

Cuda Cores Exploit

1 1 0

0 0

1 0 0

1 0

0

0 0

0 1 0

0 0 0 0 1

1 1 0 1

1 1 1

1 0 0 0 1 0

1 0 1 0 0

1 10 0 1 1

0 1 0

1 0 0 1 0
Bit-map of Similar Pixels

P1
0

0

0 1

0

0

0

0

1 1 1

1 1 0

0 0

0 0 0

0 0

0

0 0

0 0

0 0 0 0 1

0 0 0 0

0 0

0 0 0 0 0

0 0 0 0

0 00 0 0

0 0 0

0 0 0 0
Bit Sparse Pixels

0

0 0

0

0

0

0

sub

1

1

1

1

1

1

11

1 0

P2
P3
P4
P5
P6
P7
P8

P1
ΔP2
ΔP3
ΔP4
ΔP5
ΔP6
ΔP7
ΔP8

1 1 0

0 0

0 0 0

0 0

0

0 0

0 0

0 0 0 0 1

0 0 0 0

0 0

0 0 0 0 0

0 0 0 0

0 00 0 0

0 0 0

0 0 0 0

0

0 0

0

0

0

0

1

1

1

1

1

1

11

1 0

Bit Sparse Pixels Mul

x

1 1 1

1

1

1

1

1

1

11

1

Bit Serial Pixels Mul

Subcore

synergize to accelerate
bit sparsity

Fig. 1. Synergy mechanism of SynGPU.

The key insights of this scheme lie in two points: first,
leveraging the high-precision capabilities of CUDA Cores to
exploit bit-level sparsity among similar tokens without com-
promising accuracy; second, utilizing Tensor Cores, optimized
for high-throughput matrix multiplication and accumulation
(MMA) operations, to enable bit-sparse acceleration. How-
ever, achieving efficient synergy between CUDA Cores and
Tensor Cores presents two critical challenges. Firstly, CUDA
Cores and Tensor Cores compete for Register File (RF),
which can result in RF bandwidth congestion, hindering their
ability to operate in full parallelism. Secondly, Tensor cores
implement the floating-point MMA by executing dot product
(DP) operations in parallel. It is non-trivial to design bit-level
circuits to support both fixed-point and floating-point DP due
to the variability in the exponents of floating-point values
within the vectors.

(a) Bit-level sparsity in FP16 (b) Bit-level sparsity in INT8

Fig. 2. Bit-level sparsity in FP16/INT8 between token differences and token without differences

In this paper, we propose SynGPU, an algorithm-hardware
collaborative framework, that synergizes CUDA Cores and
Tensor Cores for accelerating ViTs on the GPU. Specifically,
to address the first challenge, SynGPU includes a novel data
mapping scheme that enhances data reuse in Tensor Cores.
This approach significantly reduces the frequency of RF
accesses by Tensor Cores, thereby freeing up RF resources
for CUDA Cores. Moreover, to tackle the second challenge,
we develop a Bit-Serial Dot Product (BSDP) algorithm along
with the Bit-Serial Tensor Core (BSTC), which aligns the
exponents of floating-point values within each vector and
repackages the results of DP operations. This design enables
SynGPU to support both floating-point and fixed-point bit-
sparse operations effectively.

In summary, our contributions are as follows:
• We propose SynGPU, an algorithm-hardware co-design

framework that leverages the synergy between CUDA Cores
and Tensor Cores on GPUs to accelerate bit-sparse ViTs. By
utilizing CUDA Cores to exploit bit-level sparsity derived
from token similarity and coordinating with Tensor Cores
to perform bit-sparse MMA, SynGPU achieves substantial
performance improvements for ViTs. To the best of our
knowledge, SynGPU is the first framework specifically
designed for bit-level ViTs acceleration on GPUs.

• At the algorithmic level, we propose two algorithms: IBA
and BSDP. IBA is designed to extract bit-level sparsity
among similar tokens, and BSDP focuses on combining
both fixed-point and floating-point MMA by aligning the
exponents of floating-point vectors to enable efficient bit-
level sparse floating-point MMA.

• At the hardware level, we make two contributions. Firstly,
we design a new data mapping that resolves the issue of
bandwidth congestion, enabling full parallelism between
CUDA cores and tensor cores. Secondly, we develop BSTC
that is capable of accelerating bit-sparse MMA operations
in fixed- and floating-point formats.

II. BACKGROUND AND MOTIVATION

A. Vision Transformer

Inspired by the remarkable performance of Transformer [9]
on NLP tasks, numerous efforts have been made to adapt
Transformers for visual applications. Among them, ViTs
stands out with its concise design and powerful capabilities
in image and video tasks. ViTs divide images or video frames

 C U D A C o r e T e n s o r C o r e O t h e r s

1 . 2 %

9 1 . 6 %

7 . 2 % 2 . 9 %

4 3 . 8 %
5 3 . 3 %

(a) (b)

Fig. 3. The occupancy of RF bandwidth (a) and activation time (b) of CUDA
Cores and Tensor Cores on A100 when executing ViTs.

into patches, which are then converted into tokens through a
Patch-Embedding Layer, enabling them to be directly fed into
the Transformer.

Several accelerator architectures [5]–[7] have been proposed
to optimize ViTs. For instance, DynamicViT [6] designs a
dedicated dynamic prediction module to predict and prune re-
dundant tokens. ViTCoD [5] employs an autoencoder module
to reorder attention maps, creating denser or sparser fixed pat-
terns to balance ViTs’ workload. However, these advancements
primarily focus on optimizing value-level sparsity and neglect
the potential bit-level sparsity among similar tokens.

B. Ampere GPU

In recent years, the rapid advancement of neural networks
and their substantial computational requirements have driven
significant evolution in GPU structure and performance. The
Nvidia A100 [10] serves as a prime example, featuring mul-
tiple Streaming Multiprocessors (SMs). Each Subcore of SM
comprises several CUDA cores and a Tensor Core, sharing
a common RF. Specifically, CUDA cores are utilized for
high-precision general-purpose computations, whereas Tensor
Cores are designed for high-throughput MMA operations,
incorporating numerous DP units that support various fixed-
and floating-point formats.

C. Motivation

While current research on ViT accelerators mainly focuses
on value-level sparsity, our experimental results display a more
promising form of bit-level sparsity among similar tokens. As
demonstrated in Fig. 2, we run the implementation of various
representative ViT models and subtract similar tokens within
the attention map. As a result, we observe a significantly
higher number of 0-bits for both FP16 and INT8, with bit
sparsity increasing from 50.19% to 65.98% and from 50.48%
to 75.82%, respectively.

11 15

7

12

23 8

12 23 18 10

15 12 26

16 6 28 fi
n

d
 s

im
ila

ri
ty

11

-1

T1

T1

T3

inf

6

inf

4
key

token
map

Min
Manhattan

Distance

si
m

ila
r

to
ke

n
 s

u
b

tr
a

ct
io

n
22

T1

T2

T3

T4

11 15

7

0

23 8

15 12 26

1 -1 2

T1

Bit Sparse Matrix

key token

0 0

0

0 0

0 0

0 0 00 0

0 00 0 0 0 0

0 0 0 0

0 0 0 0 01

1

1 1

V1

V2

V3

V4

1 0 3 2

values in bit-sparse tokenToken Matrix

Bit Sparse Matrix Multiplication

2 26

3

9

13 15

16 2 8

12 10 3

6 21 11 7

O1

O3

ΔO2

ΔO4

Output ΔMatrix

R
ec

o
ve

ry

2 26

3

35

13 15

16 2 8

14 23 18

22 24 13 15

O1

Output Matrix

O2

O3

O4

criteria

33

T1

T3

key
token

list

T3

ΔT2

ΔT4 44

add

add

Fig. 4. Overview of the Inter-token Bit-sparsity Awareness algorithm.

Based on such observations, we intend to extract and lever-
age the bit-level sparsity to accelerate ViTs by collaborating
with CUDA Cores and Tensor Cores. However, as shown in
Fig. 3, when Tensor Core operates at full capacity with the
RF bandwidth occupancy of 91.6%, CUDA Cores are mostly
idle due to the competitive access to RF. Furthermore, different
exponents of floating-point vectors impede accelerating MMA
in Tensor Cores with fixed-point bit-level designs [11], [12].
Despite the effort made by Bitlet [13] to support bit-level
floating-point formats, it leads to insufficient hardware utiliza-
tion in lower-bit fixed-point computations. To address such
inefficiencies, we propose SynGPU, an algorithm-hardware
co-design framework that facilitates concurrent utilization of
CUDA Cores and Tensor Cores to accelerate ViTs.

0

0
0

1
0

1
0

1

0

0
0

1
0

1
0

1

0

1
0

0
1

0
0

1

0

1
0

0
1

0
0

1

0

0
0

0
1

0
1

0

0

0
0

0
1

0
1

0

0157

13

036

024

b0

b1

b2

b3

a0

a1

a2

a3

Sh
if

t-
an

d
-A

cc
u

m
u

la
te

1

0
1

0
0

0
1

1

1

0
1

0
0

0
1

1

x
x

x
x

b0 b1 b2 b3

+

parallel input

a0
a1

a2
a3

serial input

157

3

36

24

b0

b1

b2

b3 Sh
if

t-
an

d
-A

cc
u

m
u

la
te

57

6

4

b0

b1

b2

b3 Sh
if

t-
an

d
-A

cc
u

m
u

la
te

7

b0

b1

b2

b3 Sh
if

t-
an

d
-A

cc
u

m
u

la
te

(a) (b)

1

0 1 0 1 0 11

1 0 11

0 1 0 0 1 1 0 0 1 1

1 1 0 1 0 0 0 11

1 0 1 0 1 0 1

1 1 0 1

1 0 1 0

1 1 1 0 1 0 0 0 1

0 1 1 0 0 1

10.625

1.625

0.65

58.125

1

E0=3

E1=0

E2=-1

E3=5 Em

10-bit mantissa Extended 16-bit mantissa

ΔE0=Em-E0=2

ΔE1=Em-E1=5

ΔE2=Em-E2=6

ΔE3=Em-E3=0

discard

(c)

Fig. 5. Details of: (a) Parallel Dot Product. (b)Bit-Serial Dot Product. (c)
Exponent alignment algorithm

III. ALGORITHM

A. Inter-token Bit-sparsity Awareness

In this section, we introduce Inter-token Bit-sparsity Aware-
ness (IBA), an algorithm aimed at exploiting bit-level sparsity
within ViTs. As illustrated in Fig. 4, in step 1 , we select a
subset of key tokens at a regular interval, while the remaining
tokens are non-key ones. Next, we compute the minimum
Manhattan Distance as the criteria to locate the most similar
key token to each of the non-key tokens and record them in a
key token map. In the given example, we select key tokens at
an interval of 2 and find that the most similar tokens to T2 and
T4 are T1 and T3. Step 2 then subtracts the similar token pairs
to acquire the Bit Sparse Matrix composed of numerous bit-
sparse difference tokens. The blue-highlighted part displays
the binary expressions of the values in the difference token
∆T2 = T2 − T1, exhibiting that the similarity between tokens
leads to more redundant 0-bits. Subsequently, step 3 executes
bit-sparse MMA operations to obtain the Output ∆Matrix

efficiently. Finally, based on the linearity of MMA operations,
step 4 utilizes the information in the key token map to add
the outputs of O1, O3 to ∆O2 and ∆O4, respectively, thereby
recovering the Output Matrix losslessly.

B. Bit-Serial Dot Product
The main challenge of performing bit-sparse MMA is to

support both floating-point and fixed-point formats, particu-
larly given the varying exponents of floating-point vectors.
Since floating-point multiplication consists of two main op-
erations: exponent addition and mantissa multiplication, with
the latter following the same mechanism as fixed-point multi-
plication, we propose Bit-Serial Dot Product (BSDP), an algo-
rithm that combines fixed-point bit-serial multiplication with
floating-point exponent alignment to address the challenge.

Fixed-point BSDP. The conventional DP operation de-
picted in Fig. 5(a) computes all bits in parallel. To avoid
unnecessary 0-bits, as illustrated in Fig. 5(b), we need to
transform the multiplication process into a bit-serial input
mode by encoding the matrix elements into bit index format.
This approach converts multiplication into a series of shift-
and-accumulate operations, effectively skipping the 0-bits.

Floating-point BSDP. A floating-point operand is ex-
pressed as X = 2E × M , where M is the mantissa, and
E is the exponent (we omit the sign bit for simplicity). The
floating-point BSDP consists of three steps: exponent align-
ment, mantissa multiplication, and repackage. As illustrated
in Fig. 5(c), we first align the exponents of all elements in
the vector to the largest Em by right-shifting the mantissa.
Additionally, since the right-shifting may cause overflow and
subsequent loss of precision, we extend the 10-bit mantissa to
16 bits:

Xi = 2Ei ×Mi = 2Em × (Mi ≫ ∆Ei) (1)

where ∆Ei = Em−Ei are the right-shifting bits for mantissa.
As for floating-point BSDP a⃗ × b⃗, we separately align both
exponents and then multiply the mantissa following the same
way as fixed-point BSDP. Subsequently, we repackage the
result into the standard floating-point format by adding the
unified exponents by Eqn. (2):

dp =

m∑
i=0

[2E
a
i ×Ma

i]× [2E
b
i ×M b

i] (2)

=

k∑
i=0

2E
a
m+Eb

m × (Ma
i ≫ ∆Ea)× (M b

i ≫ ∆Eb)

..
.

<<

<<

<<

+ P

BSDP unit

...

..
.

<<

<<

<<

+ P

..
.

<<

<<

<<

+ P ...

..
.

<<

<<

<<

+ P

...

...

...

...

b0

b1

bm

b0

b1

bm

a0

a1

am

a0

a1

am

a0

a1

am

a0

a1

am

b0

b1

bm

b0

b1

bm

a0

a1

am

a0

a1

am

b0

b1

bm

b0

b1

bm

b0

b1

bm

b0

b1

bm

a0

a1

am

a0

a1

am

...

Exp-Align module

A Buffer

B Buffer

Accumulate

Buffer

Ei BufferEi Buffer

MA BufferMA Buffer

Float-point Pre-processor

...

B
it

-S
er

ia
l

E
n

co
d

er

ΔE0 ΔE1 ΔEm

Em Buffer

Rearrangement Module

unpack

find
Emax

Ex
p

o
n

en
ts

A-Mantissas

B
-M

a
n

ti
ss

a
s

BSDP unit

BSDP unit BSDP unit

D
is

tr
ib

u
to

r A Matrix

B Matrix

Idx
Buffer

Reorder

M
at

ri
x

A
 a

n
d

 M
at

ri
x

B

FP
16

INT

Rearrangement Module

A Buffer

Register File

Operand Bus 3

Operand Bus 2

Operand Bus 1

Write Back

Bit-Serial Encoder

B Buffer

Acc Buffer

B Buffer

Acc Buffer

Group1 Group0

BSDP Unit

Array

BSDP Unit

Array

(a) (b)

Float-point Pre-processor

P Repackager

+

<<

Adder

Shifter

Fig. 6. Architecture of Bit-Serial Tensor Core: (a) Overview of BSTC. (b) Details of BSTC.

To reduce redundant computations, we further combine the
two right shifts in alignment operations and the left shift in
fixed-point BSDP to obtain the final result of floating-point
BSDP operations, as shown in Eqn. (3):

dp =

k∑
i=0

l∑
j=0

2E
a
m+Eb

m × [M b
i ≪ (Ij −∆Ea −∆Eb)] (3)

where Ij denotes the index of the 1-bit positions in the
elements of a⃗.

IV. ARCHITECTURE

A. Overview

The SynGPU architecture comprises two key designs. First,
we introduce a data mapping scheme to solve the RF band-
width congestion issue between CUDA Cores and Tensor
Cores, enabling parallel processing capabilities for both cores.
Second, we propose the Bit-Serial Tensor Core (BSTC), which
is capable of computing both fixed- and floating-point MMA.
Additionally, to maximize the efficiency of accelerating bit
sparse MMA in BSTC, we design a rearrangement module to
balance the matrix bit-sparsity.

step1

A0 A1

A2 A3

16

16

16

8

Buffer: A0 , B0

DP Units：idle

A0 A1

A2 A3

Buffer: A0 , B1

DP Units：A0 x B0

A0 A1

A2 A3

Buffer: A2 , B0

DP Units：A0 x B1

A0 A1

A2 A3

Buffer: A2 , B1

DP Units：A2 x B0

B0 B1

B2 B3

B0

B2 B3

B1

B2 B3

B0

B2 B3

Buffer: A0 , B0 , B1

DP Units：idle

Buffer: A0 , B0 , B1

DP Units: A0 x B0 & A0 x B1

Buffer: A0 , B0 , B1

DP Units: A0 x B0 & A0 x B1

Buffer: A0 , B0 , B1

DP Units: A0 x B0 & A0 x B1

step2 step3 step4

Register File: Idle

Ampere Tensor Core Data Mapping

SynGPU Tensor Core Data Mapping

16

16

16

32

B1

B3

B0

B2

A0 A1

...

...

write back A0 x B1

read

B0 B1

repeated read

step1 step2 step3 step4

read read read read

RF RF RF RF

B1

RF

write back A0 x B0

Fig. 7. Details of data mapping.

B. Data Mapping

When performing a 16 × 16 × 8 matrix operation in the
original Tensor Core, it is separated into 8 steps of 8 × 8 × 4
MMA process (only 4 steps are given in Fig. 7), operating in
a pipelined manner, with each process consisting of 3 parts:
reading from RF, calculation, and writing back to RF. As
depicted in the figure, in step 1, the Buffer reads A0 and B0,
while the calculation and writing back correspond to step 2
and step 3. Unfortunately, the above execution consumes most

of the RF’s memory bandwidth, causing the CUDA cores to
remain idle during Tensor Core operations. Additionally, this
data flow of Tensor Core also leads to repeated data read-
write operations, such as B1 in steps 2 and 4, resulting in
unnecessary overhead.

To address this issue, we propose to increase the capacity
of the Tensor Core’s data buffer, enabling it to read all
required data for the current computation at once during step
1. By converting the bits of elements from parallel to serial
processing in BSDP operations, the RF becomes idle during
subsequent DP computation steps, allowing it to be utilized
by CUDA cores.

Moreover, as the serial process decreases parallelism in the
Tensor Core, we expand the dimension of the B matrix to
ensure that the throughput does not decrease. Specifically, due
to the 16-bit extended mantissa detailed in III-B, the worst-
case scenario requires up to 16× cycles to compute MMA than
Ampere Tensor Core. Thus, the expansion of the B matrix is
set as 16 × 32. Additionally, to handle the repeated read-
write operations, we split the A matrix into two groups, each
with a size of 16 × 8, to compute A0 × B0 and A0 × B1

simultaneously.

C. Bit-Serial Tensor Core Design

As mentioned in III-B, to achieve bit-sparse MMA, floating-
point numbers are required to be pre-processed for exponent
alignment, while fixed-point numbers are able to directly
perform BSDP operations. Therefore, as illustrated in Fig. 6
the architecture of BSTC mainly consists of two modules: the
BSDP Array and the Floating-point Pre-processor.

BSDP Array. To implement bit-sparse matrix A × matrix
B, we replace the DP Units within the Tensor Core with BSDP
Units and arrange them in a grid array to concurrently work on
performing a number of BSDP operations, where the (x, y)-th
Unit executes BSDP between the x-th row of A and the y-th
column of B. Each BSDP Unit consists of several shifters, an
adder, and a repackage module to accomplish the fixed-point
BSDP described in III-B. Within each cycle, a vector from the
B Buffer and a serial of bit index code of matrix A from the A
Buffer are fetched to perform shift-and-accumulate operations,
which are repeated until the entire vector DP is finished.

Floating-point Pre-processor. The primary function of
the Floating-point Pre-processor is to unpack floating-point
elements in matrices and align the exponents in terms of

vectors. Initially, the unpacking process splits and extracts
the exponents and mantissa from the floating-point data, and
then finds the largest exponents as Em, respectively storing
all the segments into Ei Buffer, MA Buffer, and Em Buffer.
Notably, since the B-Mantissas do not necessitate bit-serial
encoding, they can be directly deposited in the B Buffer for
subsequent DP computations. Next, the Exp-Align module
works on subtractions ∆Ei = Em − Ei as mentioned in
Eqn. (3). Subsequently, based on the principles discussed
in III-B, the Bit-Serial Encoder combines ∆Ei and MA for
encoding into bit-serial forms and stores them in the A Buffer
for BSDP operation with B-mantissas. Finally, the repackage
module that interfaces with the Em Buffer is added at the end
of each Unit to normalize the DP results to standard floating-
point format, merge Ea

m + Eb
m into the final exponent, and

store them into the Accumulate Buffer before writing back.

D. Rearrangement Module Design
Despite the capability of BSTC in IV-C to facilitate the

acceleration of fixed- and floating-point bit-sparse MMA op-
erations, we discover that a primary bottleneck limiting the
compute performance is the bit imbalance in the elements of
matrix A. Apparently, the speed of BSDP operation executed
in a BSDP Unit shown in Fig. 5(b) is constrained by the
element a0 including the most 1-bits in the vector. Likewise,
in the BSDP Array, there is the same barrier over the entire
matrix A. Moreover, due to the random matrix distribution,
there is usually at least one bit-dense element in the matrix,
significantly decreasing the speed of the BSDP Array.

(a)

bit dense

element

bit sparse

element

Original Matrix

x

b0
b1
b2
b3
b4
b5
b6
b7

a4 a5 a6 a7a0 a1 a2 a3 a7 a0 a3 a5a1 a2 a4 a6

bit
sparse

b1
b2
b4
b6
b7
b0
b3
b5

x

reorder

R
ea

rr
a

n
g

e
a

cc
o

rd
in

g
 t

o
 θ

124 6 0 3 5

Index Lists

7

Rearranged Matrix

bit
dense

012467

3

36

2357

a0

a1
a2
a3

O
ri

gi
n

al

3

3

5

6

R
e

ar
ra

n
ge

d a1
a2

a4
a6

a4
a5
a6
a7

a7
a0
a3
a5

b0
b1
b2
b3

x + x

b4
b5
b6
b7

b0
b1
b2
b3

x + x

b4
b5
b6
b7

(b)

1

0

2

1

1

0

0

speed up

Fig. 8. Details of: (a) The Rearrangement scheme. (b) Speedup.

To settle the imbalance problem, as described in Fig. 8,
we take twice the length of the BSDP Unit’s vector as a unit
to organize the rows of the matrix into bit-sparse and bit-
dense sections, which respectively correspond to the mapping
size stated in IV-B. Specifically, we sample a few elements
from matrix A to roughly predict the sparsity of the matrix,
which serves as a threshold θ for data rearrangement. Next, we
compare the sparsity of each value against θ, thus creating a
bit-sparse balanced matrix. In the given example, we rearrange
the elements from a0, a1, a2, a3 into a1, a2, a4, a6. As a result,
the rearrangement module reduces the cycle from 6 to 3.
Moreover, to correctly realize MMA based on the rearranged
A matrix, we maintain an index list, stored in Idx Buffer, as
the reference to reorder the B matrix.

V. EVALUATION
A. Methodology

Software implementation. To verify the effectiveness of
the SynGPU framework, we select DeiT [2] with Ima-
geNet2021 [14] dataset as the representative of ViTs in image
tasks and select TimeSformer [4], Motionformer [15], and
Xvit [16] with Kinetics-400 (K400), Kinetics-600 (K600) [17],
and SSv2 [18] datasets as the representative of ViTs in video
tasks. All models are implemented using the official source
code and pre-trained models without fine-tuning. Moreover,
the interval used in the IBA algorithm is 80 and the batch size
is set as 8 in the following experiments.

Hardware implementation. For kernel-level evaluation, we
set the NVIDIA A100 GPU as the baseline. We employ
Accel-Sim [19], an open-source cycle-accurate simulator, with
integrating SynGPU model to simulate the computing perfor-
mance in FP16 and INT8 format of A100 and SynGPU. We
implement the proposed SynGPU architecture in Verilog and
synthesize it by Synopsys Design Compiler to get the area
and power consumption under 28nm technology. Given the
absence of public data on the A100 Tensor Core area, and con-
sidering that the A100 utilizes a 7nm process while our study
is based on a 28nm process, we follow work [20] to estimate
A100’s area and power under 28nm technology and 1.41GHz
frequency. For SRAM-based on-chip buffers, we use CACTI
7 [21] to model their area and power consumption under 32nm
technology and scale them to 28nm using DeepScaleTool [22].

B. Experiment

Speedup. We compare the performance between A100
Tensor Core and SynGPU BSTC on various models and
datasets in FP16 and INT8 formats respectively, as shown
in Fig. 9(a) and Fig. 9(b). Due to the fact that the A100
Tensor Core does not skip any 0-bits, it consumes the same
number of cycles when processing tensors of the same data
dimension. On the other hand, SynGPU BSTC, equipped
with the capability to accelerate bit-sparse MMA, achieves
varying speedup compared to A100 depending on the bit
sparsity of the attention map for different input data. The
average speedup achieved by SynGPU-FP16 and SynGPU-
INT8-w/o-rearrangement is 2.2× and 2.15× respectively, with
peak speedup ratios of 2.89× and 2.20×, which do not reach
the ideal speedup according to the bit-sparsity ratio indicated
in Fig 2. The reason is that BSTC cannot utilize bit-sparsity
with maximum efficiency without rearrangement. Therefore,
based on the INT8 format, we conduct ablation experiments
to demonstrate that rearrangement effectively leverages the bit
sparsity acceleration capability of BSTC, providing a 3.38×
speedup on average.

Energy Efficiency. Fig. 9(c) and Fig. 9(d) illustrate the
energy efficiency results. Compared to the A100 GPU, Syn-
GPU delivers an average of 1.84×, 1.85×, and 2.68× energy
efficiency improvements in FP16, INT8-w/o-rearrangement,
and INT8 situations. The optimization in FP16 and INT8
without rearrangement (INT8-w/o-rearrangement) attributed
to skipping unnecessary 0-bit calculations using SynGPU,

(a) Speedup in FP16 (b) Speedup in INT8

(c) Energy efficiency in FP16 (d) Energy efficiency in INT8

Fig. 9. Speedup and energy efficiency of SynGPU over A100 in FP16 and INT8 formats

thereby saving the dynamic on-chip energy. For INT8 with
rearrangement, the enhancement is achieved by utilizing a
rearrangement module to accelerate computation cycles, which
in turn reduces the static on-chip energy.

TABLE I
AREA AND POWER OF SYNGPU ARCHITECTURE.

Parameter Area(mm2) Area Ratio Power(W)
16x16 Bit-Serial DP Units 0.9306

96.45%

0.3000
1.25 KB A Buffer 0.0516 0.0358

1KB B Buffer 0.0233 0.0269
2KB Acc Buffer 0.0857 0.1835

BSDP Array 1.0913 0.5462
FindExpMax 0.0006

1.91%

0.0013
Exp-align 0.0003 0.0008

0.3KB Ma Buffer 0.0138 0.1813
0.15KB Exp Buffer 0.0069 0.1813

Floating-point Pre-processor 0.0216 0.3647
Bit-Serial Encoder 0.0019 0.16% 0.0430

Comparators and selectors 0.0098
1.48%

0.0225
0.15KB IdxList Buffer 0.0069 0.1813

Rearrangement Module 0.0167 0.2039

Hardware Overhead and Area. Table I provides an
overview of the hardware configurations and the area and
power of the BSTC in each SM of SynGPU. The pri-
mary overhead of the BSTC is the BSDP Array, with an
area of 1.0913mm2. The other modules, the Floating-point
Pre-processor, the Bit-Serial Encoder, and the Rearrange-
ment Module with areas of 0.0216mm2, 0.0019mm2, and
0.0167mm2, respectively, introduce about 1.91%, 0.16%, and
1.48% overhead of the entire Tensor Core, which are negligible
compared to the area of the BSDP Array that occupies 96.45%
of the chip area. Notably, the Rearrangement Module brings
considerable speedup effects with little hardware overhead.

Compute Performance. Table II presents the compute
performance of A100 Tensor Core and SynGPU BSTC in
FP16 and INT8 formats. Despite the area of BSTC in SynGPU

introduces a slight area overhead compared to the Tensor Core
in A100 (1.13 mm2 v.s. 0.98 mm2), the peak computation
performance of SynGPU has a significant advantage, reaching
901 TFLOPs in FP16 and 2761 TOPs in INT8, compared
to 312 TFLOPs in FP16 and 624 TOPs in INT8 on A100.
Thus, SynGPU achieves 2.49× and 3.81× improvements of
compute density in FP16 and INT8 over A100, respectively
under the same area budget. Moreover, according to the power
simulation of computation modules given in Table I, we obtain
the power efficiency of SynGPU for the FP16 and INT8
formats, which reaches 7.69 TFLOPs/W and 23.57 TOPs/W,
respectively, delivering 2.58× and 3.95× increase over A100.
Due to the acceleration and energy reduction arising from bit-
level sparsity, SynGPU achieves substantial advancements in
both compute density and compute power efficiency.

TABLE II
COMPUTE PERFORMANCE OF A100 AND SYNGPU.

Devices Peak Perf. Area Per SM Compute Density Power Efficiency
A100-FP 312 TFLOPs 0.98 mm2 2.96 TFLOPs/mm2 2.98 TFLOPs/W

A100-INT8 624 TOPs 0.98 mm2 5.93 TOPs/mm2 5.96 TOPs/W
SynGPU-FP 901 TFLOPs 1.13 mm2 7.37 TFLOPs/mm2 7.69 TFLOPs/W

SynGPU-INT8 2761 TOPs 1.13 mm2 22.60 TOPs/mm2 23.57 TOPs/W

VI. CONCLUSION

In this paper, we introduce SynGPU, an innovative
algorithm-hardware co-design framework that synergizes
CUDA Cores and Tensor Cores on GPUs to exploit and
harness the bit-level sparsity among similar tokens, achieving
significant performance enhancement of ViTs. SynGPU tack-
les two crucial challenges: firstly, the low parallelism caused
by competitive access to the RF by CUDA Cores and Tensor
Cores; secondly, the inability of tensor cores to accelerate bit-
level sparse MMA due to differing exponents in floating-point
vectors. Our innovative scheme fully exploits the bit sparsity of
ViTs for acceleration, yielding remarkable outcomes without
incurring accuracy loss.

REFERENCES

[1] A. Dosovitskiy, “An image is worth 16x16 words: Transformers for
image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[2] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10 347–10 357.

[3] D. Wodajo, “Deepfake video detection using convolutional vision
transformer,” arXiv: Computer Vision and Pattern Recognition,arXiv:
Computer Vision and Pattern Recognition, Nov 2020.

[4] G. Bertasius, H. Wang, and L. Torresani, “Is space-time attention all
you need for video understanding?” in ICML, vol. 2, no. 3, 2021, p. 4.

[5] H. You, Z. Sun, H. Shi, Z. Yu, Y. Zhao, Y. Zhang, C. Li, B. Li, and
Y. Lin, “Vitcod: Vision transformer acceleration via dedicated algorithm
and accelerator co-design,” in 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2023, pp.
273–286.

[6] Y. Rao, W. Zhao, B. Liu, J. Lu, J. Zhou, and C.-J. Hsieh, “Dynam-
icvit: Efficient vision transformers with dynamic token sparsification,”
Advances in neural information processing systems, vol. 34, pp. 13 937–
13 949, 2021.

[7] P. Dong, M. Sun, A. Lu, Y. Xie, K. Liu, Z. Kong, X. Meng, Z. Li, X. Lin,
Z. Fang et al., “Heatvit: Hardware-efficient adaptive token pruning for
vision transformers,” in 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2023, pp. 442–
455.

[8] Z. Li, M. Sun, A. Lu, H. Ma, G. Yuan, Y. Xie, H. Tang, Y. Li, M. Leeser,
Z. Wang et al., “Auto-vit-acc: An fpga-aware automatic acceleration
framework for vision transformer with mixed-scheme quantization,” in
2022 32nd International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, 2022, pp. 109–116.

[9] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[10] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,
“Nvidia a100 tensor core gpu: Performance and innovation,” IEEE
Micro, vol. 41, no. 2, pp. 29–35, 2021.

[11] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov,
and A. Moshovos, “Bit-pragmatic deep neural network computing,” in
Proceedings of the 50th annual IEEE/ACM international symposium on
microarchitecture, 2017, pp. 382–394.

[12] A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud,
S. Sharify, M. Nikolic, K. Siu, and A. Moshovos, “Bit-tactical: A
software/hardware approach to exploiting value and bit sparsity in
neural networks,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 749–763.

[13] H. Lu, L. Chang, C. Li, Z. Zhu, S. Lu, Y. Liu, and M. Zhang, “Distilling
bit-level sparsity parallelism for general purpose deep learning accelera-
tion,” in MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, 2021, pp. 963–976.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[15] M. Patrick, D. Campbell, Y. Asano, I. Misra, F. Metze, C. Feichtenhofer,
A. Vedaldi, and J. F. Henriques, “Keeping your eye on the ball: Tra-
jectory attention in video transformers,” Advances in neural information
processing systems, vol. 34, pp. 12 493–12 506, 2021.

[16] A. Bulat, J. M. Perez Rua, S. Sudhakaran, B. Martinez, and G. Tz-
imiropoulos, “Space-time mixing attention for video transformer,” Ad-
vances in neural information processing systems, vol. 34, pp. 19 594–
19 607, 2021.

[17] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev et al., “The kinetics
human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.

[18] R. Goyal, S. Ebrahimi Kahou, V. Michalski, J. Materzynska, S. West-
phal, H. Kim, V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag et al.,
“The” something something” video database for learning and evaluat-
ing visual common sense,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 5842–5850.

[19] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:
An extensible simulation framework for validated gpu modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 473–486.

[20] Z. Mo, L. Wang, J. Wei, Z. Zeng, S. Cao, L. Ma, N. Jing, T. Cao, J. Xue,
F. Yang et al., “Lut tensor core: Lookup table enables efficient low-bit
llm inference acceleration,” arXiv preprint arXiv:2408.06003, 2024.

[21] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “Cacti 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, pp. 1–25, 2017.

[22] S. Sarangi and B. Baas, “Deepscaletool: A tool for the accurate
estimation of technology scaling in the deep-submicron era,” in 2021
IEEE International Symposium on Circuits and Systems (ISCAS), May
2021, p. 1–5. [Online]. Available: http://dx.doi.org/10.1109/iscas51556.
2021.9401196

http://dx.doi.org/10.1109/iscas51556.2021.9401196
http://dx.doi.org/10.1109/iscas51556.2021.9401196

	Introduction
	Background and Motivation
	Vision Transformer
	Ampere GPU
	Motivation

	Algorithm
	Inter-token Bit-sparsity Awareness
	Bit-Serial Dot Product

	Architecture
	Overview
	Data Mapping
	Bit-Serial Tensor Core Design
	Rearrangement Module Design

	Evaluation
	Methodology
	Experiment

	Conclusion
	References

