
H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous
Hybrid-Bonding-based Low-Batch LLM Inference
Cong Li

Peking University
School of Integrated Circuits

Beijing, China
leesou@pku.edu.cn

Yihan Yin
Peking university
School of EECS
Beijing, China

yyhsess2021@stu.pku.edu.cn

Xintong Wu
Peking University
School of EECS
Beijing, China

vincent_xt@stu.pku.edu.cn

Jingchen Zhu
Peking University

School of Computer Science
Beijing, China

zjc990112@pku.edu.cn

Zhutianya Gao
Shanghai Jiao Tong University

Shanghai, China
zechariah0825@sjtu.edu.cn

Dimin Niu
Alibaba Group Inc.
Sunnyvale, USA

dimin.niu@alibaba-inc.com

Qiang Wu
Houmo AI

Beijing, China
qiang.wu@houmo.ai

Xin Si
SouthEast University

Nanjing, China
xinsi@seu.edu.cn

Yuan Xie
HKUST

Hong Kong, China
yuanxie@ust.hk

Chen Zhang∗
Shanghai Jiao Tong University

Shanghai, China
chenzhang.sjtu@sjtu.edu.cn

Guangyu Sun∗
Peking University

School of Integrated Circuits
Beijing, China

Beijing Advanced Innovation Center
for Integrated Circuits

Beijing, China
gsun@pku.edu.cn

Abstract
Low-batch large language model (LLM) inference has been exten-
sively applied to edge-side generative tasks, such as personal chat
helper, virtual assistant, reception bot, private edge server, etc. To
efficiently handle both prefill and decoding stages in LLM inference,
near-memory processing (NMP) enabled heterogeneous computa-
tion paradigm has been proposed. However, existing NMP designs
typically embed processing engines into DRAM dies, resulting in
limited computation capacity, which in turn restricts their ability
to accelerate edge-side low-batch LLM inference.

To tackle this problem, we propose H2-LLM, a Hybrid-bonding-
based Heterogeneous accelerator for edge-side low-batch LLM in-
ference. To balance the trade-off between computation capacity
and bandwidth intrinsic to hybrid-bonding technology, we propose

∗Co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731008

H2-LLM’s architecture and extract its architecture design space.
We further propose a data-centric dataflow abstraction to fully ex-
ploit the heterogeneous architecture’s acceleration opportunities
in low-batch LLM inference. Based on the whole design space, we
propose a design space exploration (DSE) framework to automati-
cally find out the optimal design. Compared with existing in-die
NMP-based heterogeneous accelerators, H2-LLM achieves 2.72×
geomean speedup and 1.48× geomean better energy efficiency. H2-
LLM’s data-centric dataflow exploration framework is open-sourced
at https://github.com/leesou/H2-LLM-ISCA-2025.

CCS Concepts
• Computer systems organization → Heterogeneous (hybrid)
systems.

Keywords
Large Language Model, Hybrid Bonding, Near-Memory Processing
ACM Reference Format:
Cong Li, Yihan Yin, Xintong Wu, Jingchen Zhu, Zhutianya Gao, Dimin
Niu, Qiang Wu, Xin Si, Yuan Xie, Chen Zhang, and Guangyu Sun. 2025.
H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-
Bonding-based Low-Batch LLM Inference. In Proceedings of the 52nd Annual
International Symposium on Computer Architecture (ISCA ’25), June 21–25,
2025, Tokyo, Japan. ACM, New York, NY, USA, 17 pages. https://doi.org/10.
1145/3695053.3731008

https://orcid.org/0000-0001-7760-3254
https://orcid.org/0009-0002-3848-3426
https://orcid.org/0009-0002-9971-2413
https://orcid.org/0000-0002-4321-7694
https://orcid.org/0009-0008-1013-5781
https://orcid.org/0000-0001-8440-3875
https://orcid.org/0009-0009-8981-2876
https://orcid.org/0000-0002-4993-0087
https://orcid.org/0000-0003-2093-1788
https://orcid.org/0000-0003-2762-2726
https://orcid.org/0000-0002-7315-6589
https://doi.org/10.1145/3695053.3731008
https://github.com/leesou/H2-LLM-ISCA-2025
https://doi.org/10.1145/3695053.3731008
https://doi.org/10.1145/3695053.3731008

ISCA ’25, June 21–25, 2025, Tokyo, Japan Cong Li et al.

1 Introduction
Generative large language models (LLMs) (e.g., GPT family [6, 58,
65], LLaMA family [14, 71, 72], etc.) have demonstrated outstanding
ability in a wide range of applications such as chatbot [19, 57], code
completion [9, 17, 54], and many other generative tasks [11, 66,
86, 86]. Apart from being deployed as a cloud service for millions
of users [3, 17, 19, 57], LLMs are gradually sinking to edge-side
platforms to meet user’s requirements for function availability, per-
sonalization, and data privacy [15, 23, 29, 30, 42, 49, 53, 63, 75], as
exemplified in Fig. 1. Different from the large-batch characteristic
in cloud-level applications [24, 60], these edge-side LLM services
feature a low-batch property (one to a few tens) due to their per-
sonalized nature and require low-latency processing to maintain a
smooth user experience.

Performing efficient LLM inference requires the hardware to
effectively handle its two stages: prefill and decoding. In the prefill
stage, the LLM processes the input token sequence (i.e., the prompt)
in a single step, leveraging high computational parallelism among
hundreds to thousands of tokens. In contrast, the decoding stage
processes one token of each request per iteration, behavingmemory-
intensive nature due to the low data reuse. To meet such disparate
demands, Near-Memory Processing (NMP) based heterogeneous
architectures have been widely proposed [24, 37, 39, 41, 47, 60, 85].
These architectures combine conventional centralized processors
(e.g., GPUs) with processing engines embedded inmemory channels
to accelerate both computation-intensive and memory-intensive
operators. In this way, they have achieved notable performance
improvements in cloud-level LLM inference scenarios.

However, existing NMP designs typically place NMP process-
ing engines into DRAM dies (defined as "in-die NMP" in this pa-
per) [37, 39, 41, 43, 44], providing extremely low computation ca-
pacity due to DRAM technology’s scarce logic resources [13]. This
prevents them from fully accelerating low-batch LLM inference:
First, the speedup brought by in-die NMP diminishes as the batch
size increases. At the same time, the limited batch size fails to alle-
viate the memory-bound issue to the centralized processor in the
decoding stage. Consequently, both the centralized processor and
the NMP processing engines can be sub-optimal in low-batch infer-
ence. Second, with the increased arithmetic intensity introduced by
multi-head attention’s variants [1, 67], in-die NMP falls short of sus-
taining its superior performance to attention operators. Although
a recent work [85] has attempted to enhance the NMP computa-
tion capacity, the high power consumption of its underlying HBM
memory makes it unsuitable for edge-side scenarios.

The recent emerging hybrid bonding (HB) technology [7, 16, 33,
55, 79, 84] seems to be a promising alternative to existing methods.
It not only offers considerable bandwidth with lower power con-
sumption than HBM [16, 55], but also enables NMP computation
capacity enhancement by customizing processing engines on the
incorporated logic die. However, there are still several challenges
in designing a hybrid-bonding-based heterogeneous accelerator
for low-batch LLM inference. For architecture design, hybrid bond-
ing’s high bandwidth comes at the cost of controllers occupying a
significant portion of the logic die’s area, resulting in a trade-off
between computation capacity and bandwidth. As to dataflow de-
sign, fixed operator mappings [24, 37, 39, 60] cannot fully utilize

1 hundredsa few tens (10-20)
Cloud ServiceEdge Service

(a) Personal Chat Helper (b) Virtual Assistant (c) Reception Bot

Batch Size

Raw Answer
Tokens

User n

LLM Agent Bot

Queries

Knowledge Database

User 1 User 2

……Response

User

App n

LLM-embodied
Management System

App 1 App 2 …

User

Request Response

Interaction
Tokens

User: How to go from San
Francisco to New York ?

Figure 1: Edge-Side LLM Services.

the acceleration opportunities of the heterogeneous architecture in
low-batch LLM inference, while the prefill-unaware nature in exist-
ing dataflow exploration [47] may hurt the end-to-end performance,
despite its capability in decoding stage acceleration.

To tackle these challenges, we proposeH2-LLM, a hybrid-bonding-
based heterogeneous accelerator for edge-side low-batch LLM infer-
ence. H2-LLM is the first work aiming to comprehensively explore
the computation-bandwidth trade-off intrinsic to hybrid bonding
for LLM inference. To this end, we propose H2-LLM’s heteroge-
neous hybrid bonding architecture and extract its architecture de-
sign space. To fully utilize the acceleration potential of H2-LLM’s
architecture, we propose a data-centric dataflow abstraction and
extract the dataflow design space. Based on the design space, H2-
LLM’s DSE framework can automatically find out the optimal de-
sign. To summarize, we have made the following contributions:
• We analyze the deficiencies of in-die NMP architectures and
pose the chances and challenges of hybrid bonding for low-
batch LLM inference on edge.

• We propose H2-LLM’s heterogeneous hybrid bonding architec-
ture and extract its architecture design space to explore the
computation-bandwidth trade-off inherent in hybrid bonding.

• We propose H2-LLM’s data-centric dataflow abstraction to fully
exploit the capability of H2-LLM’s heterogeneous architecture.

• We summarize several takeaways for future heterogeneous hy-
brid bonding architecture design by conducting case studies in
H2-LLM’s design space.

Extensive experiments demonstrate that H2-LLM outperforms ex-
isting in-die NMP-based heterogeneous accelerators by 2.72× (ge-
omean) speed up and 1.48× (geomean) better energy efficiency.

2 Background
2.1 Transformer-based LLMs
As illustrated in Fig. 2-(a), mainstream LLMs are built on top of
transformer decoder layers [73]. The token embedding at the begin-
ning converts input tokens to embeddings which decoder layers can
process, while the language model (LM) head at the end translates
output embeddings to new tokens. A conventional transformer
layer contains a multi-head attention (MHA) block and a feed-
forward network (FFN) block, both of which are accompanied by
normalization and residual layers. In the MHA block, the input
embeddings are first projected to query, key, and value vectors by
three fully-connected (FC) layers (Q, K, V). Then, these vectors are

H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-Bonding-based Low-Batch LLM Inference ISCA ’25, June 21–25, 2025, Tokyo, Japan

MQAV Head
K Head

Q Head

𝑲𝑲𝟎𝟎
𝑽𝑽𝟎𝟎

Token Embedding Decoder 0 LM headDecoder N-1…

La
ye

rN
or

m

La
ye

rN
or

mQ

K

V

So
ft

m
ax

O

Re
sid

ua
l

Re
sid

ua
l

Ac
tiv

at
io

n

F2SVSVSVSV

SVSVSVQK
F1

(a) LLM Structure with Conventional Transformer Layers

(b) Attention Operator Variants

MHAV Head
K Head

Q Head 𝑸𝑸𝟎𝟎

𝑲𝑲𝟎𝟎
𝑽𝑽𝟎𝟎

𝑸𝑸𝟏𝟏

𝑲𝑲𝟏𝟏
𝑽𝑽𝟏𝟏

𝑸𝑸𝟐𝟐

𝑲𝑲𝟐𝟐
𝑽𝑽𝟐𝟐

𝑸𝑸𝟑𝟑

𝑲𝑲𝟑𝟑
𝑽𝑽𝟑𝟑

𝑸𝑸𝟒𝟒

𝑲𝑲𝟒𝟒
𝑽𝑽𝟒𝟒

𝑸𝑸𝟓𝟓

𝑲𝑲𝟓𝟓
𝑽𝑽𝟓𝟓

𝑸𝑸𝟔𝟔

𝑲𝑲𝟔𝟔
𝑽𝑽𝟔𝟔

𝑸𝑸𝟕𝟕

𝑲𝑲𝟕𝟕
𝑽𝑽𝟕𝟕

𝑸𝑸𝟎𝟎 𝑸𝑸𝟏𝟏 𝑸𝑸𝟐𝟐 𝑸𝑸𝟑𝟑 𝑸𝑸𝟒𝟒 𝑸𝑸𝟓𝟓 𝑸𝑸𝟔𝟔 𝑸𝑸𝟕𝟕

GQAV Head
K Head

Q Head

𝑲𝑲𝟎𝟎
𝑽𝑽𝟎𝟎

𝑸𝑸𝟎𝟎 𝑸𝑸𝟏𝟏 𝑸𝑸𝟐𝟐 𝑸𝑸𝟑𝟑 𝑸𝑸𝟒𝟒 𝑸𝑸𝟓𝟓 𝑸𝑸𝟔𝟔 𝑸𝑸𝟕𝟕

𝑲𝑲𝟏𝟏
𝑽𝑽𝟏𝟏

𝑲𝑲𝟐𝟐
𝑽𝑽𝟐𝟐

𝑲𝑲𝟑𝟑
𝑽𝑽𝟑𝟑

(c) Gated Linear Unit

(d) Parallel Transformer Layer

F1 F3
Activation

*
F2

Attention
Block

LayerNorm

+

FFN
Block

𝐻𝐻

𝐻𝐻

Figure 2: LLM Architecture and Transformer Variants.

split into 𝐻 heads. In each head, every query vector is multiplied
with the key vectors before its position (QK). After being processed
by the softmax function, the attention scores are applied to corre-
sponding value vectors (SV). The outputs are then concatenated
and projected by the output projection FC layer (O). The FFN block
followed by the MHA block contains a bottom FC layer (F1) and
a top FC layer (F2). The output of F1 needs to be processed by an
activation function (e.g., GeLU [22]) before being sent to F2.

Apart from the conventional transformer layer introduced above,
there are several variants adjusting the layer structure: Multi-query
attention (MQA) [2, 11, 18, 67] and group-query attention (GQA) [1,
4, 14, 72] are proposed to alleviate the memory-intensive issue in
MHA [24, 60]. As depicted in Fig. 2-(b), MQA groups all key heads to
one key-value head pair, while GQA generalizes MQA to keep more
than one key-value head pair (four in this example). In addition to
the computation pattern of attention operator, transformer layer’s
operator organization can also be adjusted. As shown in Fig. 2-(c),
gated linear units (GLUs) [11, 14, 68, 72] introduce one more bottom
FC (F3) to the FFN block. In the parallel transformer layer [11, 34, 74]
illustrated in Fig. 2-(d), the attention block and the FFN block share
the same input and can be processed concurrently.

2.2 LLM Inference on Edge
Recently, LLMs are anticipated to be deployed on edge-side plat-
forms such as smart home equipment, household servers, and intel-
ligent cockpit, etc., owing to their powerful capabilities in manag-
ing and executing a wide range of complex tasks. As exemplified
in Fig. 1, the personal chat helper offers instant replies to user’s
questions [42]. The virtual assistants in smart home equipment or
intelligent cockpits [29, 30, 53] receives the user’s instructions and
interacts with multiple application interfaces or firmwares. The re-
ception bot [23, 63, 75] in hospitality environments obtains the cus-
tomers’ queries and provide adequate guidance. Besides, due to the
data privacy issue, LLMs can also be deployed on the private edge
server for the internal cooperation in creative teams[76, 77, 82].

LLM inference on edge exhibits two major characteristics: First,
due to the personalized nature and the demand for low-latency in-
teraction, edge-side LLM services typically handles a small number
of requests at a time. For instance, the personalized chatbot (e.g.,

Table 1: Workload Analysis for Representative Use Cases

Use Case Dataset Avg. Prompt Len. Avg. Decoding Len.
Code Completion HumanEval (HE) [9] 157 67

Chatbot ShareGPT (SG) [70] 783 209
Context Understanding LongBench (LB) [5] 1886 97
Question Answering LooGLE (LG) [48] 1971 17

Jetson’s text generation webui [42]) communicates with single user.
The LLM-embodied management system interacts with several in-
terfaces (e.g., 6 in AIOS [53]). The reception bot or private edge
server can provide LLM service to a few tens of users.

Second, personalized LLM inference applications exhibit varied
workload distributions (i.e., prompt and decoding length) across
different use cases. To demonstrate such diversity, we analyse four
typical LLM applications using corresponding open-source datasets:
code completion (HumanEval [9]), chatbot (ShareGPT [70]), context
understanding (LongBench [5]), question answering (LooGLE [48]).
The context length is configured as 2048 considering edge-side
platform’s confined resource provision. As listed in Table 1, for
code completion and chatbot applications, the prompt and decoding
length presents comparable orders of magnitude, thus behaving
"decoding heavy" nature according to previous profiling results [26,
60]. On the other hand, the prompt length in context understanding
and question answering is one or two magnitudes longer than the
decoding length, leading to a higher share of prefill latency ("prefill
heavy") [26, 60]. Therefore, it is crucial to efficiently handle both
prefill and decoding stages to enhance user experience.

2.3 Heterogeneous NMP Accelerators for LLMs
Near-Memory Processing has been a promising solution to acceler-
ate memory-intensive applications [12, 20, 31, 36, 45, 46, 50, 80, 81,
83, 91, 92]. To efficiently handle both prefill and decoding stages,
NMP-enabled heterogeneous accelerators have been proposed by
both the industry [37, 39, 41] and the academia [24, 47, 60]. In
these proposals, apart from the conventional centralized processor
(e.g., GPU, TPU, etc.), processing engines (PEs) are also placed into
memory channels. By driving these intra-channel PEs to execute
concurrently, they can utilize DRAM’s bank-level parallelism, thus
providing abundant bandwidth for memory-intensive operators in
LLM inference. For example, Samsung equips NMP-enabled HBM
cubes with AMD’s MI100 GPU [39]. By offloading all FC layers to
NMP PEs, it can accelerate single-batch GPT-J 6B inference against
GPU-only architectures. SK-Hynix offloadsMHA operators to NMP-
enabled GDDR6 memory system and leave FC operators to GPUs,
which can outperform GPU-only systems [37]. AttAcc and Ne-
uPIMs [24, 60] adopts dedicated NMP-enabled HBM cubes to accel-
erate MHA operators in large-batch cloud inference. SpecPIM [47]
explores the execution mapping between the centralized accelerator
and the NMP PEs for different LLMs used in speculative inference.
Apart from proposals targeting for cloud-level LLM inference, Sam-
sung and SK-Hynix also propose concept NMP products based on
LPDDR5 [39] and LPDDR5X [37] for on-device LLM inference.

3 Motivation
3.1 Limitations of Existing In-Die NMP Designs
Existing NMP-enabled heterogeneous LLM accelerators typically
place NMP PEs together with the DRAM arrays in the samememory

ISCA ’25, June 21–25, 2025, Tokyo, Japan Cong Li et al.

Table 2: Commodity In-die NMP Proposals for LLMs

Product NMP Bandwidth NMP Computation Capacity NMP Comp.-BW. Ratio

HBM-PIM [39, 43] 1-1.229 TB/s per cube
(4× external bandwidth)

1.2 TFLOPS per cube
(9.6 GFLOPS per PE) ~1 FLOP/Byte

GDDR6-AiM [37, 41, 44] 512 GB/s per channel
(16× external bandwidth)

512 GFLOPS per channel
(32 GFLOPS per PE) 1 FLOP/Byte

LPDDR5-PIM [39] 102.4 GB/s per channel
(8× external bandwidth)

102.4 GFLOPS per channel
(6.4 GFLOPS per PE) 1 FLOP/Byte

LPDDR5X-AiM [37] 153.6 GB/s per channel
(8× external bandwidth)

307.2 GOPS per channel
(19.2 GOPS per PE) 2 OP/Byte

die (named as in-die NMP in this paper). As summarized in Table 2,
although existing commodity designs can achieve 4-16× higher
bandwidth than the external memory interface, their computation-
bandwidth ratio is only 1-2. Such a low computation capacity pre-
vents them from fully accelerating low-batch LLM inference: On
the one hand, although in-die NMP architectures can bring substan-
tial speedup to single-batch FC operators, their low computation
capacity severely constrains the inference performance with the
batch size increasing. Considering low-batch FC operators in the
decoding stage are still memory-bound to the centralized processor,
existing heterogeneous in-die NMP designs can only provide low
effective computation capacity to these operators. On the other
hand, although MHA operators can achieve substantial speedup on
in-die NMP architectures [24, 37, 60], the arithmetic intensity of
attention operators also increases with the adoption of GQA and
MQA, thus facing similar issue to low-batch FC operators.

To elucidate such limitation, we adopt operators in LLaMA3
8B [14] to conduct roofline analysis on 8 Samsung LPDDR5-PIM [39]
channels. For FC operators, we adjust the batch size (BS) from 1 to
16. For attention operators, the key-value (KV) head number is var-
ied from 1 to 32 (LLaMA3 8B’s query head number). As illustrated
in Fig. 3, although in-die NMP can achieve speedup when BS < 8
or KV head number > 4, the advantage gradually shrinks due to its
limited computation capacity. When BS ≥ 8 or KV head number
≤ 4, in-die NMP fails to provide performance improvement, even
though the centralized processor is still memory-bound. This leads
to the system’s low resource utilization. Therefore, it is necessary
to enhance NMP PE’s computation capacity to better alleviate the
memory-bound issue in low-batch LLM inference.

3.2 Hybrid Bonding to the Rescue?
The low computation capacity of in-die NMP stems from the DRAM
technology they employ: First, compared with CMOS in the same
technology node, DRAM technology’s transistor is 3× slower, and
its logic density is 10× lower [13]. Besides, DRAM chips typically
equip fewer metal layers [13, 84], leading to lower routing density
than logic dies. Second, the area budget available to in-die NMP PEs
is highly limited to avoid excessive density loss (e.g., 25% area sug-
gested by SK Hynix’s AiM [21, 44]), making it difficult to populate
more PEs. Duplex [85] tries to alleviate this issue by placing PEs
to HBM’s logic (buffer) dies and leveraging HBM’s TSV pitch size
reduction to provide sufficient bandwidth. However, HBM’s high
power consumption makes this HBM-coupled design unfeasible to
edge accelerators. Alternative measures are still required.

Recently, hybrid-bonding (HB) has emerged as a next-generation
integration technology [7, 16, 33, 55, 79, 84]. As illustrated in Fig. 4-
(a), it vertically stacks the DRAM die on top of the logic die and
connect them via Cu-Cu direct fusion bonding. In this way, HB
can deliver substantial bandwidth owing to its high I/O parallelism

Arithmetic Intensity (FLOPs/Byte)

0

1

2

3

4

0 5 10 15 20 25 30 35

MHA

GQA
(KV 16)

GQA
(KV 8) GQA

(KV 4)
GQA

(KV 2)

MQA

BS 1
BS 2 BS 4 BS 6 BS 8

BS 10
BS 12

BS 14
BS 16

TF
LO

PS

In-die NMP

In-Die NMP
Compute Bound

Centralized Processor
Bandwidth Bound

FC Operator
Attention Operator

Figure 3: In-die NMP Roofline Analysis.

DRAM

Logic

Substrate Bump

(a) Hybrid Bonding Integration

Cu-Cu Pillar Pitch

Ctrl. Ctrl. Ctrl. Ctrl.

TSV 0%
10%
20%
30%
40%
50%

Lo
gi

c
Di

e
Ar

ea
 %

128 256 512 1024Pin Num.
(b) Integration Overhead Analysis

Figure 4: Hybrid Bonding Overview.

(110,000/mm2 with 3um pitch) [16, 55, 84]. Besides, the low parasitic
capacitance of HB boosts its power efficiency, making it feasible
to edge-side accelerator design compared with 2.5D integration
technology (e.g., HBM) [16, 33]. Moreover, compared with in-die
NMP, PEs can be customized on the logic die, thus enabling the
enhancement of computation capacity. We can adopt less advanced
logic technology to meet the cost and yield requirements of edge-
side accelerators. Previous works have applied hybrid-bonding-
based NMP (HB-NMP) architecture in AI applications such as neural
recommendation [55], vision model inference [84], etc.

Despite the promising characteristics exhibited in HB technology,
its integration overhead poses challenge to designing an accelera-
tor suitable for edge-side low batch LLM inference. HB technology
requires numerous memory controllers to drive its large number
of I/O pins, which encroach upon the available area for computa-
tion logic [55]. As depicted in Fig. 4-(b), according to our in-house
implementation using 40nm technology, the controller occupies
approximately 40% of the logic die area to manage 1024 HB I/O pins
for a single DRAM bank. While reducing the I/O pin number could
leave more area to computation logic, the resulting decrease in
bandwidth would limit the computation utilization, hindering the
performance improvement. Therefore, balancing the computation-
bandwidth trade-off intrinsic to HB technology is vital to fully
unveil its acceleration potential, which is still lack of discussion.

3.3 Limitations of Existing Dataflow Designs
Apart from the challenge in HB-NMP architecture design, existing
dataflow designs for NMP-enabled heterogeneous LLM accelera-
tors still remain limitations when it comes to edge-side low-batch
LLM inference. As summarized in Table 3, most of existing pro-
posals map a fixed subset of operators to NMP PEs [24, 37, 39, 60].
Fixed operator mapping can work well in large-batch cloud infer-
ence, where the arithmetic intensity of different operators exhibits
considerable variation. However, they cannot fully utilize NMP’s
acceleration capability in low-batch inference and fails to exploit
the parallelism provided by variants such as parallel transform-
ers. SpecPIM [47] conducts mapping exploration on NMP-enabled
heterogeneous accelerators in its single-model mapping. However,

H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-Bonding-based Low-Batch LLM Inference ISCA ’25, June 21–25, 2025, Tokyo, Japan

HB Ctrl.
NMP PE

HB Ctrl.
NMP PE

HB Ctrl.
NMP PE

NMP-enabled Memory System

Centralized
Processor
(xPU, etc.)

HB-NMP
Channel

…

HB-NMP
Channel

Memory
Channel

…
Memory
Channel Input Global Buffer

…

…

HB Ctrl.
NMP PE

Input Global Buffer

Hybrid-Bonding Ctrl.

…

Weight/KV
Buffer

PE Ctrl.

(b) HB-NMP Channel’s Memory Die and Logic Die (c) HB-NMP’s PE Architecture(a) Overall Architecture

…

…

…

Output
Buffer

…

…

…
…

…

…DRAM Bank
HB I/O

DRAM Bank
HB I/O

…
DRAM Bank

HB I/O

…
DRAM Bank

HB I/O

Figure 5: H2-LLM’s Architecture Overview.

Table 3: Comparison of Different Dataflow Designs

Name Mapping Decision Operator Fission
GPU + HBM-PIM [39] Fixed (FC only) No

GPU + GDDR6-AiM [37] Fixed (Single-batch FC + Attention) No
NeuPIMs [24] Fixed (Attention only) No
AttAcc [60] Fixed (Attention + Fixed Fission) Fixed (FFN only)
SpecPIM [47] Compute-centric Exploration (Prefill-unaware) No
H2-LLM (ours) Data-centric Exploration (Prefill-aware) Flexible

its compute-centric mapping abstraction constrains operator place-
ment to either normal channels or NMP channels by first assigning
the computation engine (i.e., centralized processor or NMP PEs).
Since the two types of channels may co-exist due to the system
integration or resource utilization issue [32, 39, 47], this mapping
strategy restricts the channel number allocated to each operator,
thereby reducing the max external bandwidth available to the cen-
tralized processor. Given that the computation-bandwidth ratio
of edge-side processors can achieve 500-1000 [56], such a reduc-
tion in bandwidth may shift compute-bound prefill operators to
memory-bound, hurting the prefill performance. Considering the
prefill stage can take up non-negligible overhead after the decoding
stage is fully accelerated, especially in prefill-heavy scenarios, it is
necessary to design a prefill-aware mapping exploration scheme.

There are two methods for this problem: (1) Duplicate weights
for both prefill and decoding stages like prefill-decoding disaggre-
gation [27, 28, 61, 64, 90]. Although this solution works well for
cloud-level LLM serving, which usually adopts multiple model repli-
cas to meet the service-level objects of millions of users. Edge-side
accelerators equipped with limited resources can hardly afford the
huge memory footprint incurred by weight duplication. (2) Oper-
ator fission, which splits one operator to both normal and NMP
channels without duplicating the weights [60]. However, there still
lacks a solution to co-explore the operator mapping and operator
fission to achieve the optimal end-to-end performance.

To tackle these challenges, we propose H2-LLM, a heteroge-
neous accelerator based on HB-NMP for edge-side low-batch LLM
inference. In the following sections, we will introduce H2-LLM’s
architecture design, dataflow abstraction, and the DSE framework.

4 H2-LLM’s Architecture
4.1 Architecture Overview
As depicted in Fig. 5-(a), H2-LLM’s architecture comprises a cen-
tralized processor and a NMP-enabled memory system. The cen-
tralized processor is a xPU-like (GPU, TPU, etc.) high-performance
accelerator responsible for computation-intensive operators. It also
schedules the entire inference procedure according to the dataflow
described in Sec. 5. The NMP-enabled memory system contains

multiple memory channels, which can be either normal DRAM
channels with single memory die or hybrid-bonding-based NMP
(HB-NMP) channels with the memory die stacked on a logic die.

The memory die in each HB-NMP channel is shown in the upper
part of Fig. 5-(b). The DRAM banks in the memory die can be ac-
cessed under two modes: (1) Normal mode. When HB-NMP channel
does not conduct computation, each DRAM bank can be accessed
by the centralized processor through the external interface. (2) NMP
mode. When HB-NMP channel is conducting near-memory compu-
tation, all DRAM banks can be accessed concurrently by NMP PEs
through their distinct HB controllers. Only one mode is activated
at a time to avoid DRAM bank’s row buffer interference. For each
normal channel, its DRAM banks do not contain HB interfaces and
only serve centralized processor’s memory accesses through the
external memory interface like HB-NMP channel’s normal mode.

Fig. 5-(b)’s bottom part depicts HB-NMP channel’s logic die
architecture. The NMP controller receives commands from the
centralized processor via the external interface and drives NMP PEs
to conduct computation or memory access. Each NMP PE is paired
with one DRAM bank, which can be accessed via PE’s HB controller.
In this way, NMP PEs can execute in parallel to provide abundant
NMP bandwidth. A input global buffer is shared among all PEs to
avoid duplicating the input tensor to each DRAM bank. Since the
dedicated execution flow (discussed later) does not involve inter-PE
communication, we exclude NoC from NMP PEs to reserve more
area for computation logic.

HB-NMP’s PE design is illustrated in Fig. 5-(c). Each PE contains
multiple floating-point units (FPUs) to conduct MAC operations
for low-batch GEMM operators in the decoding stage. The weight
and output buffers are distributed across each PE, allowing them to
compute distinct output tiles. According to the instruction from the
NMP controller, the PE controller drives the FPUs for computation
or the HB controller for memory access.

4.2 NMP Operator Execution Flow
Similar to previous works [43, 47, 60], H2-LLM adopts offloading-
based execution model, which contains three steps: (1) The cen-
tralized processor prepares inputs and scatter them to HB-NMP
channels. (2) After input preparation, PEs conduct computation
concurrently. (3) After all PEs finishing computation, the central-
ized processor reads and merges their (partial) results and prepares
for the next operator. Under this execution model, the operator
execution flow in HB-NMP channels is as follows:
Inter-Channel Operator Partition: Given the LLM operator
and the HB-NMP channels, we need to first split the workload

ISCA ’25, June 21–25, 2025, Tokyo, Japan Cong Li et al.

𝑀𝑀𝑐𝑐𝑐

𝐾𝐾𝑐𝑐𝑐
𝑰𝑰𝟎𝟎 𝑰𝑰𝟏𝟏 … 𝑰𝑰𝑷𝑷−𝟏𝟏 Input Global Buffer



𝑀𝑀𝑐𝑐𝑐

𝑁𝑁𝑐𝑐𝑐

𝐾𝐾𝑐𝑐𝑐

𝑁𝑁𝑐𝑐𝑐

…

𝑾𝑾𝟎𝟎

𝑶𝑶𝟎𝟎 𝑶𝑶𝑷𝑷−𝟏𝟏𝑶𝑶𝟏𝟏

𝑾𝑾𝟏𝟏 … 𝑾𝑾𝑷𝑷−𝟏𝟏

Input Weight Output



Input TransferInput Gather

FPUs 0

𝐼𝐼0
𝑊𝑊0

𝑂𝑂0 
W. Buf. O. Buf.

Bank 0
PE 0

FPUs 1

𝐼𝐼1
𝑊𝑊1

𝑂𝑂1 
W. Buf. O. Buf.

Bank 1
PE 1

FPUs P-1

𝐼𝐼𝑃𝑃−1
𝑊𝑊𝑃𝑃−1

𝑂𝑂𝑃𝑃−1 
W. Buf. O. Buf.

Bank P-1
PE P-1

…

 

Figure 6: H2-LLM’s Intra-Channel Execution Flow.

among these channels. For GEMM operators, assume the shape
of input and weight tensors are (𝑀,𝐾) and (𝐾, 𝑁), respectively.
Considering the weight tensors take up huge memory footprints,
we do not split 𝑀 to avoid their duplication. Splitting 𝐾 and 𝑁
brings the trade-off between collecting & merging partial-results
and duplicating inputs. Although the total computation amount
is almost the same under different tiling strategies, such a trade-
off leads to different data transfer sizes in Step (1) and (3), thus
affecting the operator’s end-to-end performance. We adopt an an-
alytical model to find out the optimal tiling factors. Assume the
element size, channel number, the effective memory load/store
bandwidth, and the tiling factors of dim 𝐾 and 𝑁 are 𝑠 , 𝐶 , 𝐵𝑙 , 𝐵𝑠 ,
𝑇𝐾 , 𝑇𝑁 , respectively. The total transfer overhead can be estimated

as:
(𝑠×𝑀× 𝐾

𝑇𝐾
)×𝐶

𝐵𝑠×𝐶 +
(𝑠×𝑀× 𝑁

𝑇𝑁
)×𝐶

𝐵𝑙×𝐶 = 𝑠×𝑀×𝐾
𝑇𝐾 ×𝐵𝑠 + 𝑠×𝑀×𝑁

𝑇𝑁 ×𝐵𝑙 . Therefore,
we can solve the following optimization problem to find out the
optimal tiling factors:

min
𝑇𝐾 ,𝑇𝑁

𝑠 ×𝑀 × (𝐾

𝑇𝐾 × 𝐵𝑠
+ 𝑁

𝑇𝑁 × 𝐵𝑙
), s.t. 𝑇𝐾 ×𝑇𝑁 = 𝐶 (1)

Considering 𝐵𝑙 , 𝐵𝑠 can be regarded as constants given the ten-
sor transfer pattern, this problem has an analytical solution 𝑇𝐾 =√︃
𝐶 × 𝐾×𝐵𝑙

𝑁×𝐵𝑠 . Therefore, given the NMP channel number, we can
get the optimal tiling factors statically for each operator.

If there are multiple batched GEMMs in this operator (i.e., atten-
tion operator), these GEMMs are split into sub-batches and scattered
evenly across HB-NMP channels. By decreasing the number of HB-
NMP channel assigned to each GEMM, we can reduce the data
volume of duplicated inputs and output partial sums, reducing the
data transfer overhead. Tiling factors can be solved similar to Eq. 1.
Intra-Channel Execution: After workload scattering, all HB-
NMP channels conduct computation in parallel. As illustrated in
Fig. 6, if one HB-NMP channel is allocated to single GEMM operator
with the shape of (𝑀𝑐ℎ, 𝐾𝑐ℎ)× (𝐾𝑐ℎ, 𝑁𝑐ℎ), the input tensor is evenly
scattered across DRAM banks. The weight tensor and output tensor
are evenly split along the output feature dim 𝑁𝑐ℎ to each bank.
Accordingly, each PE produces distinct results𝑂𝑖 by consuming𝑊𝑖
without interference. To simplify the buffer management and avoid
DRAM bank’s row buffer conflict when transferring different ten-
sors, we adopt output-stationary execution flow with the following
procedure: The input tile is first loaded to the global buffer from
DRAM banks through the HB I/O (❶). Next, each PE loads weight
tiles and drives the FPUs to perform MAC operation (❷-❸). Once
each PE’s output tile has been fully accumulated by repeating ❶-❸,
it is written back to the local DRAM bank (❹). Subsequently, the
HB-NMP channel returns to ❶ and compute new output tiles. In

this way, each tensor is accessed consecutively, thus avoiding row
buffer interference among the access of different tensors. For each
HB-NMP channel, given the workload shape and each PE’s archi-
tecture parameters (computation capacity, bandwidth, buffer size,
etc.), the optimal tile sizes can be found out statically via existing
performance models [40, 51, 59]. As to batched GEMM operators,
different GEMMs and their corresponding KV cache/output tensors
are first allocated to separate PEs. Each GEMM follows the same
execution flow as discussed above. The input global buffer sends
data to each PE on demand according to the GEMM allocation.

4.3 H2-LLM’s Command Interface
To drive the execution flow described above, we introduce four
types of commands to control HB-NMP channels:
Mode Change: To avoid the row buffer interference issue, this
command is inserted at the beginning and the end of HB-NMP
PE’s execution, serving as a memory barrier to isolate centralized
processor’s normal memory accesses and other NMP commands.
For Mode Change command at the beginning of execution, it also
carries the tile size information, which will be used by the NMP
controller to generate offsets of each SRAM buffer.
Near-Memory Computation: This command is used to drive
HB-NMP PEs to conduct computation. Since all PEs have identical
execution process, we can issue one command to control all PEs
in one HB-NMP channel. Besides, similar to previous work [24],
this command controls HB-NMP channels in a coarse-grained man-
ner. Each command corresponds to one weight tile’s computation,
carrying the initial offsets of each buffer’s tensor tile. The NMP con-
troller is responsible for unpacking it into fine-grained instructions
to control PEs conducting computation.

FPUs in each HB-NMP PE only conduct MAC operation for
the following reasons: First, softmax and normalization operators
need to collect outputs before computation, leading to low paral-
lelism and bandwidth requirements [60]. Second, similar to previ-
ous work [47], element-wise operators can be efficiently fused with
NMP operator’s result merging stage (i.e., Step (3) in H2-LLM’s
execution model). Therefore, we leave non-GEMM operators to the
centralized processor and reserve more area to GEMM operators.
Input Global Buffer Data Movement: This command is respon-
sible for transferring input tiles from DRAM banks to the input
global buffer. By providing the data volume and initial addresses,
the NMP controller generates a series of DRAM commands to drive
HB I/Os to conduct data movement.
Local Buffer Data Movement: This command is responsible for
the data transfer between each PE’s weight/output buffer and local
DRAM bank. Similar to Near-Memory Computation command, this
command is a coarse-grained all-bank command. By coordinating
the issue order of fine-grained instructions from the NMP controller,
PE computation and weight buffer loading can be overlapped.

4.4 H2-LLM’s Architecture Design Space
H2-LLM’s architecture design space contains three dimensions:
HB-NMP Resource Distribution: Considering previous propos-
als may place both NMP and normal channels to exploit the paral-
lelism in the operator graph [47] or to fully utilize all computation

H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-Bonding-based Low-Batch LLM Inference ISCA ’25, June 21–25, 2025, Tokyo, Japan

Norm.

NMP
Op.

Channel

0
1
2
3
4
5

1
0

𝑃𝑃(1,0)
Q

K
QK
𝑃𝑃(0,0)

(a) Parallel Transformer’s Operator Graph

Q

K

V

QK

SV

F1

F2

F3

O

FC Op. Attention Op.

(b) Memory Access Group Partition

≼

Q

K

V

QK

F3

𝐴𝐴0

𝐴𝐴0

(c) Coarse-Grain Binding (d) Fine-Grain Binding

V F3

𝑃𝑃(0,1) 𝑃𝑃(0,2)

F1 F2

OSV

𝑃𝑃(1,1)

𝑻𝑻𝟎𝟎
(𝟎𝟎,𝟎𝟎)

𝑻𝑻𝟏𝟏
(𝟎𝟎,𝟎𝟎)

OSV

F1 F2

𝐴𝐴1

Q

K Norm. {0,1}

NMP {4,5}
QK Norm. {0,1}

NMP {4,5}

𝑻𝑻𝟎𝟎
(𝟎𝟎,𝟏𝟏)

V NMP {2,3}

𝑷𝑷(𝟎𝟎,𝟎𝟎)

𝑷𝑷(𝟎𝟎,𝟏𝟏) 𝑷𝑷(𝟎𝟎,𝟐𝟐)

𝑷𝑷(𝟏𝟏,𝟎𝟎)

𝑷𝑷(𝟏𝟏,𝟏𝟏)

𝑻𝑻𝟎𝟎
(𝟎𝟎,𝟐𝟐)

NMP {0,1}F3

𝑻𝑻𝟎𝟎
(𝟏𝟏,𝟎𝟎) 𝑻𝑻𝟏𝟏

(𝟏𝟏,𝟎𝟎)

F1 Norm. {0,1}
NMP {4,5} F2 Norm. {0,1}

NMP {4,5}

SV NMP
{0,1,2,3}

𝑻𝑻𝟎𝟎
(𝟏𝟏,𝟎𝟎) 𝑻𝑻𝟏𝟏

(𝟏𝟏,𝟎𝟎)

O NMP
{0,1,2,3}

Norm. {0,1}
NMP {4,5}

Norm. {0,1}
NMP {4,5}

NMP
{2,3}

NMP
{0,1}

NMP
{0,1,2,3}

𝐴𝐴1

Figure 7: Operator-Channel Binding in H2-LLM’s Data-Centric Dataflow Abstraction.

resources [32], we introduce HB-NMP channel number into the de-
sign space. By adjusting this parameter, we can explore the optimal
NMP resource distribution.
PE Architecture: To explore the trade-off between bandwidth and
computation capacity as discussed in Sec. 3.2, we first introduce
HB I/O bandwidth to the design space. For computation capacity,
we adjust each PE’s total MAC number and operation frequency.
When the computation capacity requirement can be satisfied by
multiple frequencies, we can choose the low-frequency design to
reduce the energy consumption.
SRAM Buffer Size: Considering the tensor volume varies among
operators/models/scenarios (e.g., batch size, context length), the
buffer size requirement changes accordingly. Therefore, we intro-
duce input global/weight/output buffer sizes to the design space.

5 H2-LLM’s Data-Centric Dataflow Abstraction
H2-LLM’s data-centric dataflow abstraction consists of two stages:
operator-channel binding and operator execution mapping. In this
section, we will first elaborate on the details of these stages. Then,
based on the whole dataflow abstraction, we will introduce H2-
LLM’s end-to-end execution flow and summarize the dataflow de-
sign space. Note that this data-centric dataflow abstraction is not
constrained to H2-LLM’s architecture design. It can be generalized
to all NMP-based heterogeneous LLM accelerators.

5.1 Operator-Channel Binding
Themain limitation of the compute-centric dataflow abstraction [47]
is that the operator placement is constrained by computation en-
gine allocation (i.e., centralized processor or NMP PEs). Although
it can choose the optimal engine and explore operator-graph-level
parallelism, the decreased external memory bandwidth may cause
centralized processor operators’ performance degradation, thus
hurting the end-to-end performance. Besides, constraining the op-
erator placement to only one type of channel (i.e., normal or NMP)
prevents it from exploring the capability of operator fission on
heterogeneous NMP accelerators [60].

To tackle these problems, instead of directly assigning the com-
putation engine, our data-centric dataflow abstraction first binds
memory channels to each operator. The operator-channel binding
procedure is composed of three steps:
Step 1: Memory Access Group Partition: For each transformer
layer, the first step is to split its operator graph into severalMemory

Access Groups (MAGs) so that we can explore the inter-operator
parallelism. Assume the transformer layer’s operator set is 𝑉 . The
MAG partition procedure can be represented as:

𝐴0 ⪯ 𝐴1 ⪯ ... ⪯ 𝐴𝑀−1, where

𝐴0 ∪𝐴1∪... ∪𝐴𝑀−1 = 𝑉 , and 𝐴𝑖 ∩𝐴𝑖′ = ∅ (∀𝑖 ≠ 𝑖
′
)

(2)

In Eq. (2), each 𝐴𝑖 (0 ≤ 𝑖 ≤ 𝑀 − 1) represents a MAG. The notation
𝐴𝑖 ⪯ 𝐴 𝑗 means that all operators in 𝐴𝑖 do not depend on operators
in 𝐴 𝑗 . Besides, each operator in 𝑉 is exactly assigned to one MAG.
In eachMAG, operators sharing the same input tensor are randomly
combined together to explore different operator fission strategies.
Each MAG takes up all normal & NMP channels, which will be
transposed to more detailed channel allocation in subsequent steps.
Step 2: Coarse-grain binding: Considering each MAG may still
have independent operator subsets (e.g., {F1, F2} and {SV, O} in 𝐴1
of Fig. 7), the next step of operator-channel binding is to assign
separate memory channels to these subsets, so that we can preserve
the parallel execution capability inherent in each MAG.

Formally, for eachMAG 𝐴𝑖 , we extract its weakly connected com-
ponents: 𝐴𝑖 = {𝑃 (𝑖,0) , ..., 𝑃 (𝑖,𝑁−1) }. Each weakly connected compo-
nent 𝑃 (𝑖, 𝑗) is named as Memory Partition Group (MPG), meaning
that it will be assigned to a separate subset of memory channels.
The memory channel set is represented as𝐶 = {𝑃𝐶0, ...𝑃𝐶𝑃−1, 𝑁𝐶},
where each 𝑃𝐶𝑝 represents one NMP channel, while 𝑁𝐶 is the col-
lection of all normal channels. We abstract all normal channels
into one "virtual channel" considering all workloads assigned to
normal channels are executed by the centralized processor. Given
these representations, the coarse-grain binding in each MAG can
be described as the following Group-Channel Mapping (GCMap):

𝐺𝐶𝑀𝑎𝑝𝐴𝑖 : {𝑃 (𝑖,0) , ..., 𝑃 (𝑖,𝑁−1) } → P(𝐶) − ∅ (3)

In Eq. (3), P(𝐶) indicates the power set of𝐶 . A valid GCMap should
satisfy the following constraints: (1) Channel exclusive constraint:
For any two MPGs, their channel sets should have no intersection:

𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗)) ∩𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗 ′)) = ∅, (∀𝑗 ≠ 𝑗
′
) (4)

(2) Channel utilziation constraint: All channels should be occupied
by the MPGs in each MAG:

𝑁−1⋃
𝑗=0

𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗)) = 𝐶 (5)

ISCA ’25, June 21–25, 2025, Tokyo, Japan Cong Li et al.

F3

V

F1QK
Q

𝐴𝐴0 𝐴𝐴1

K
F2

SV O

1
0

0
1
2
3
4
5

Norm.

NMP

Time

Channel Centralized
NMP
Centralized + NMP
Synchronization

𝑷𝑷(𝟎𝟎,𝟎𝟎): 4VPUs

𝑷𝑷(𝟎𝟎,𝟏𝟏): 2VPUs

𝑷𝑷(𝟎𝟎,𝟐𝟐): 2VPUs

𝑷𝑷(𝟏𝟏,𝟎𝟎): 4VPUs

𝑷𝑷(𝟏𝟏,𝟏𝟏): 4VPUs

Case (1)(3)

Case (1)(3)

Case (2) Case (3)

Figure 8: H2-LLM’s Layer Execution Flow in Decoding Stage.

Step 3: Fine-grain binding: The last step of operator-channel
binding is to determine detailed channel allocation. Considering op-
erators exhibit sequential dependency in each MPG 𝑃 (𝑖, 𝑗) , we first
stratify it into operator tiers accordingly: 𝑃 (𝑖, 𝑗) = {𝑇 (𝑖, 𝑗)

0 , ...,𝑇
(𝑖, 𝑗)
𝑋−1 }.

Each operator tier𝑇 (𝑖, 𝑗)
𝑘

occupies all channels assigned to thisMPG
(i.e.,𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗))) and its operators are mutually independent.
Therefore, the channel binding of operators in 𝑇 (𝑖, 𝑗)

𝑘
can be de-

scribed by the following Operator-Channel Mapping (OCMap):

𝑂𝐶𝑀𝑎𝑝
𝑇

(𝑖,𝑗)
𝑘

: 𝑇 (𝑖, 𝑗)
𝑘

→ P(𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗))) − ∅ (6)

P(𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗))) denotes the power set of 𝑃 (𝑖, 𝑗) ’s channel set.
Similar toGCMap, a validOCMap also follows the channel exclusive
constraint and channel utilization constraint as discussed above.
Binding Example: In Fig. 7, we adopt parallel transformer [11]’s
operator graph to exemplify the whole operator-channel binding
procedure. Assume the accelerator contains 6 NMP channels and 2
normal channels. The parallel transformer layer is first split into two
MAGs (𝐴0, 𝐴1) as depicted in Fig. 7-(b), with no operator combined
together. Both of them take up all 8 channels. Then, 𝐴0 and 𝐴1 are
partitioned into three and two MPGs according to the dependency.
Each MPG is assigned to a separate channel subset. During fine-
grain binding, MPGs 𝑃 (0,0) , 𝑃 (1,0) , 𝑃 (1,1) are stratified into two tiers
according to the operator dependency. For operator tiers with single
operator, all channels are bound to the sole operator. Otherwise,
channels are further partitioned. For 𝑇 (0,0)

0 in this example, Q is
assigned to all NMP channels, while K takes up all normal channels.

5.2 Operator Execution Mapping
Given the operator-channel binding, we then need to decide the
computation engine responsible for each operator. Operators in the
prefill stage are assigned to the centralized processor considering
each prompt has hundreds to thousands of tokens. For the decoding
stage, if the operator is assigned exclusively to either normal or
NMP channels, it is executed by the centralized processor or NMP
PEs accordingly. Otherwise, if the operator is bound to both normal
and NMP channels, operator fission will be applied: For GEMM
operator with the shape of (𝑀,𝐾) × (𝐾, 𝑁), we split the output
feature dim 𝑁 between the centralized processor and NMP PEs.
For attention operators, different GEMMs are assigned to each of
these two computation engines. In this way, there is no interference
between the centralized processor and NMP PEs after fission.

5.3 Transformer Layer Execution Flow
Based on the data-centric dataflow abstraction discussed above, the
execution flow of each transformer layer is as follows:

During the prefill stage, operators are executed sequentially on
the centralized processor, which is similar to conducting inference

on conventional centralized-processor-only architectures. During
the decoding stage, allMAGs are executed sequentially according to
the sorting order in the operator-channel binding. All MPGs in each
MAG are executed in parallel. To ensure such concurrency, MPGs
in each MAG are assigned with distinct vector processing units
(VPUs) of the centralized processor according to their max partial
sum volume. Operator tiers in each MPG are executed sequentially
according to the data dependency, while operators in each tier are
executed concurrently on separate computation engines.

Given the execution order, synchronization is conducted during
the decoding stage at four cases: (1) In each MAG, synchronize
among all MPGs’ last operators before the next MAG’s execution.
(2) In each MPG, synchronize among all operators in each tier be-
fore executing the next tier. (3) For operators conducting fission,
synchronize between the centralized processor part and the NMP
part. (4) In eachMAG, when VPU number is not enough for distinct
assignment, synchronize among operator tiers of allMPGs, with the
synchronization point determined by roofline-model-based latency
estimation. The controller in the centralized processor manages
synchronization according to operators’ execution flow and the
deterministic timings of centralized processor and NMP PEs’ oper-
ations (memory access, buffer access, computation, etc.).

Fig. 8 illustrates decoding stage’s execution flow of the example
in Fig. 7 in logical timestamp. We assume there are eight VPUs. The
two MAGs are executed according to the sorting order of 𝐴0 ⪯ 𝐴1.
In each 𝐴𝑖 , its MPGs are executed concurrently (represented in
identical logical duration) and their last operators ((QK, V, F3) and
(F2, O)) need to be synchronized (case (1)). The two tiers in 𝑃 (0,0) ,
𝑃 (1,0) , and 𝑃 (1,1) are executed sequentially according to the depen-
dency. In 𝑃 (0,0) , the two operators in its first tier (Q and K) executes
concurrently and requires synchronization (case (2)). For operators
conducting fission (QK, F1, F2), synchronization is conducted to
wait for full result computation (case (3)). Synchronization of QK
and F2 is combined with case (1) in the figure. Since all MPGs are
assigned with distinct VPUs as shown in the figure, the execution
flow does not involve synchronization case (4).

5.4 H2-LLM’s Dataflow Design Space
In the design space of H2-LLM’s data-centric dataflow abstraction,
we first explore the MAG partition 𝐴0 ⪯ 𝐴1 ⪯ ... ⪯ 𝐴𝑀−1. Since
MPG partition is determined given eachMAG’s operator graph, the
next explorable dimension is each MAG’s Group-Channel Mapping
𝐺𝐶𝑀𝑎𝑝𝐴𝑖 . After given all MPGs, the operator tiers can also be
inferred. Therefore, the third component in the design space is each
operator tier’s Operator-Channel Mapping 𝑂𝐶𝑀𝑎𝑝

𝑇
(𝑖,𝑗)
𝑘

. Finally, for
operators allocated to both normal and NMP channels, we explore
the partition ratio between the two computation engines.

6 H2-LLM’s DSE Framework
6.1 Framework Overview
Fig. 9 provides an overview of H2-LLM’s DSE framework. It takes
three inputs: (1) Workload information, which contains the LLM’s
model definition along with scenario-specific information (e.g.,
expected batch size, prompt length, decoding length, etc.). (2) Archi-
tecture parameters, which contains a list of candidate architectures
described by the parameters within H2-LLM’s architecture design

H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-Bonding-based Low-Batch LLM Inference ISCA ’25, June 21–25, 2025, Tokyo, Japan

H2-LLM DSE FrameworkINPUT

Arch.
Params

Workload
Info.

DSE
Settings

OUTPUT

Best
Dataflow

Best
Arch.

Perf.
Report

Model Parser

Exploration Engine

SelectorPopulation Generator
Initializer
Evolver

Mutation
Crossover

Individual
Architecture

Dataflow

Capacity Checker
NMP Ch. Checker

Normal Ch. Checker

Evaluator
Latency Model
Energy Model

Op. Graph, Op. Shape, etc.











Figure 9: Overview of H2-LLM’s DSE Framework.

space as outlined in Sec. 4.4. If there is only one architecture can-
didate, the DSE framework can be used to identify the optimal
dataflow for the specified architecture. (3) DSE settings, such as
iteration rounds, optimization goal, etc.

After receiving these inputs, the DSE framework first adopts the
model parser to extract transformer layer’s operator graph and each
operator’s tensor shape. Then, these information together with the
architecture parameters and DSE settings are sent to the exploration
engine, which will search for the optimal architecture-dataflow co-
design under the given scenario. After finishing DSE, the optimal
design and its performance estimation will be reported. In the next
sub-section, we will detail the workflow of the exploration engine.

6.2 Exploration Engine’s Workflow
The exploration engine adopts genetic algorithm [25] to figure
out the optimal design. In the beginning, the population generator
initializes the first iteration’s population by randomly sampling
individuals from the design space (❶). For each individual, the ar-
chitecture design is first sampled, followed by the random selection
of dataflow abstraction. Then, this population is sent to the capac-
ity checker (❷). It will examine all channels’ capacity occupancy
status in each individual according to the operator-channel binding.
If there are channels meeting overflow issue, the individual will be
marked as illegal and discarded. After checking, all legal individuals
will be forwarded to the evaluator (❸), which adopts a simulator
(introduced in the next section) to evaluate the latency and energy
consumption of each design. The evaluated individuals are then
transferred to the selector (❹), which feeds the top-K individuals
back to the population generator (❺). The selection criteria is to
minimize latency by default, which can be adjusted in DSE settings.
Then, the population generator evolves new populations through
genetic operators on the top-K individuals (❻) and launches a new
iteration. After repeating❷-❻ for several iterations, the exploration
engine terminates and reports the optimal design.

In the population generator, we develop the following genetic
operators for population evolution:
OP1 (Re-sample): Randomly re-sample a new architecture along
with a new dataflow from the co-design space.
OP2 (Mutate): Keep the selected top-K individual’s architecture
design, and re-sample a new dataflow design.
OP3 (Mutate): Keep the selected top-K individual’s architecture de-
sign andMAG partition. Re-sample GCMaps, OCMaps, and operator
partition ratios.

Table 4: Model Configurations Used for Evaluation
Model Param. Layer (Hidden, Intermediate) (Q head, KV head)
OPT 6.7B 32 (4096, 16384) (32, 32)

LLaMA3 8B 32 (4096, 14336) (32, 8)
PaLM 8B 32 (4096, 16384) (16, 1)

OP4 (Mutate): Keep the selected top-K individual’s architecture
design, MAG partition, and GCMaps. Re-sample OCMaps together
with operator partition ratios.
OP5 (Crossover): Randomly select the architecture from two de-
signs sampled from the top-K individuals. Then, randomly choose
non-conflict MAGs alternately from the two designs. If there are re-
mained operators, randomly generate new MAGs for them. Finally,
randomly sample GCMaps, OCMaps, and operator partition ratios
according to the selected architecture and new MAGs.

The workflow discussed above provides a basic process to ex-
plore the optimal design for one input workload. When there are
multiple input workloads, we can sample all workloads’ dataflow
in each individual during DSE Step-❶ and Step-❻ in Fig. 9 and
use all workloads’ weighted average performance to evaluate each
individual during Step-❹ and Step-❺ to balance the DSE across
these workloads, similar to previous work’s practice [8].

6.3 Model Complication Flow
Given the architecture and the dataflow, the model is compiled
through the following steps: (1) Generate each operator’s execution
flow. For centralized processor operators, the execution flow can be
generated automatically by existing xPU compilers [10, 87, 88]. For
NMP operators, we first adopt Eq. 1 to decide workload scattering.
Then, we adopt NMP operator templates to find optimal buffer tile
sizes using performance models for tiled accelerators [40, 51, 59].
Currently these templates are manually designed according to the
execution flow in Sec. 4.2. How to automatically generate operator
templates will be our future work. For operators conducting opera-
tor fission, the two parts follow separate execution flow generation
process accordingly. The element-wise operators are fused with
their preceding GEMM operators following previous work’s prac-
tice [47] during execution flow generation. (2) After getting each
operator’s execution flow, we then arrange each transformer layer’s
execution flow and insert synchronization primitives as discussed
in Sec. 5.3. All transformer layers follow the same execution flow
since they have identical operator graph. (3) Finally, the end-to-end
execution flow is sent to the controller in the centralized processor
to schedule H2-LLM hardware for inference.

7 Evaluation
7.1 Evaluation Methodology
Benchmarks: As listed in Table 4, we choose OPT 6.7B [86], LLaM-
A3 8B [14], PaLM 8B [11] for evaluation, which have different
transformer architectures and adopt MHA/GQA/MQA, respectively.
All models are under FP16 data type. To evaluate the performance
under different scenarios in edge-side low-batch LLM inference, we
configure the batch size as 1/4/16 and set the token number as the
average number of the four datasets (HumanEval (HE), ShareGPT
(SG), LongBench (LB), LooGLE (LG)) listed in Table 1.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Cong Li et al.

LLaMA3 8B

HE SG LB LG
Batch Size = 16

HE SG LB LG
Batch Size = 4

HE SG LB LG
Batch Size = 16

HE SG LB LG
Batch Size = 16

HE SG LB LG
Batch Size = 1

HE SG LB LG
Batch Size = 1

HE SG LB LG
Batch Size = 4

HE SG LB LG
Batch Size = 16

0
1
2
3
4
5

N
or

m
. S

pe
ed

up

HE SG LB LG
Batch Size = 1

En
er

gy
 E

ffi
ci

en
cy

0.0
0.5
1.0
1.5
2.0
2.5

HE SG LB LG
Batch Size = 4

HE SG LB LG
Batch Size = 4

CP ID-NMP ID-NMP+ H2-LLM

OPT 6.7B

HE SG LB LG
Batch Size = 1

PaLM 8B

HE SG LB LG
Batch Size = 1

HE SG LB LG
Batch Size = 4

HE SG LB LG
Batch Size = 16

HE SG LB LG
Batch Size = 1

HE SG LB LG
Batch Size = 4

HE SG LB LG
Batch Size = 16

0.
13 0.

65

0.
12 0.

64

0.
14 0.

66

0.
06

0.
21

0.
21

0.
20

0.
23 0.
39 0.
47

0.
490.

77

0.
43

0.
44 0.

66

0.
32 0.
42

0.
34 0.
43

0.
42 0.

68
0.

63

0.
12 0.

65

0.
12 0.

64

0.
13 0.

66

0.
21 0.

76

0.
21 0.

43

0.
21 0.

43

0.
24 0.

47

0.
42 0.

65

0.
50

0.
31 0.
50

0.
32 0.

56
0.

38 0.
84

0.
62

0.
12 0.

66

0.
11 0.

64

0.
13 0.

66

0.
20 0.

74

0.
21 0.

43

0.
21 0.

42

0.
24 0.

46

0.
39 0.

61

0.
50

0.
31 0.

51
0.

32 0.
59

0.
37 0.

88
0.

57

0.
07

0.
09

0.
09

0.
09

0.
12 0.
18

0.
17

0.
17 0.
26 0.
35

0.
33

0.
06

0.
06

0.
07

0.
07

0.
07

0.
09

0.
10 0.
14

0.
13 0.
22 0.
26

0.
27

0.
08

0.
08

0.
07

0.
06 0.
07

0.
07

0.
07 0.
11 0.
16

0.
19 0.
21

0.
22

Figure 10: Performance Comparison against Baselines.
Table 5: H2-LLM’s Architecture DSE Parameters
Hierarchy Parameter Range

NMP Distribution NMP Channel Number {2, 4, 6, 8} NMP Channels

NMP PE
FPU Number per PE {1, 2, 4, 8} FPUs

PE Frequency {0.4, 0.6, 0.8, 1} GHz
HB I/O Bandwidth {6.4, 12.8, 25.6, 51.2} GB/s

NMP SRAM Buffer
Input Global Buffer {4, 8, 16, 32, 64, 128} KB

Weight Buffer (per PE) {4, 8, 16, 32, 64, 128} KB
Output Buffer (per PE) {0.25, 0.5, 1, 2, 4, 8} KB

Table 6: Max FPU Num./PE under Different HB Bandwidths
HB I/O Bandwidth 6.4 GB/s 12.8 GB/s 25.6 GB/s 51.2 GB/s

0.4/0.6/0.8/1GHz max num. (8, 8, 8, 8) (8, 8, 8, 4) (8, 8, 4, 4) (8, 4, 4, 2)

System Configuration:We configure H2-LLM’s centralized pro-
cessor as a TPU-like processor [35], which contains 8 128×128 sys-
tolic arrays together with 8 SIMD-128 vector processing units run-
ning at 1GHz. The on-chip SRAMbuffer is configured as 128MB. The
memory system contains 8 channels, each with 16 256MB DRAM
banks. The external memory interface is configured as LPDDR5-
6400. The design space of H2-LLM’s HB-NMP architecture is listed
in Table 5. We equip each FPU with 16 MACs and change the FPU
number to adjust each PE’s MAC number in the design space.

To explore the trade-off in HB design, we implement FPUs with
Chisel and synthesize them with 40nm technology. The areas of
FPUs under 0.4/0.6/0.8/1.0GHz are 0.31/0.44/0.59 /0.77mm2. SRAM
buffer’s density is 2.72mm2/MB according to tsmc SRAM compiler.
Each NMP PE’s area is 6.76mm2. HB-related area numbers are
obtained from our real-chip tape-out [55]. Each HB I/O pin’s data
rate is 0.4Gbps. With 128/256/512/1024 pins, the bandwidth per
HB I/O ranges from from 6.4GB/s to 51.2GB/s, resulting in the
HB controller occupying 4.6%/10.7%/19.7%/40.2% of each PE’s area.
The maximum numbers of FPUs per PE for each frequency, under
different HB bandwidths, are listed in Table 6.
Baselines: We compare H2-LLM with three existing designs: (1)
Centralized processor only (CP). We double the centralized pro-
cessor’s computation capacity considering NMP introduces extra
computation resources. (2) In-die NMP-based heterogeneous ar-
chitecture (ID-NMP), which adopts Samsung’s LPDDR5-NMP pro-
posal [39]: Each PE is placed near one bank, featuring 6.4GB/s NMP
bandwidth and one FPU with 16 MACs @ 200MHz. Each chan-
nel’s NMP computation capacity and bandwidth are 102.4GFLOPS
and 102.4GB/s. (3) In-die NMP-based heterogeneous architecture
with enhanced computation capacity (ID-NMP+). ID-NMP+ adopts
AiM’s PE design [41] (i.e., one FPU per PE with 16 MACs @ 1GHz),
providing the max computation capacity among existing commod-
ity in-die NMP proposals [37, 39, 41]. All channels in ID-NMP(+)

0
1
2
3
4
5

OPT 6.7B LLaMA3 8B PaLM 8B

CP ID-NMP ID-NMP+ H2-LLM

N
or

m
.

Sp
ee

du
p

BS=4 BS=8 BS=16 BS=4 BS=8 BS=16 BS=4 BS=8 BS=16

Figure 11: Performance Comparison under Mixed Scenarios.

are NMP channels considering their low computation capacity. The
other configurations are identical to H2-LLM for fair comparison.
Simulation:We extend Ramulator2 [52] to simulate NMP PE’s com-
putation. We adopt Tileflow’s performance model [89] to evaluate
centralized processor operators’ performance and inject the results
into the simulator for end-to-end evaluation. Tileflow supports
the evaluation of attention operator fusion, which can fully exploit
centralized processor’s performance. For energy evaluation, the cen-
tralized processor’s MAC energy is 0.682pJ/MAC, which is synthe-
sized with 10nm technology. For HB-NMP under 0.4/0.6/0.8/1.0GHz,
the MAC energy is 0.974/1.075/1.148/1.365pJ/MAC. In-die NMP’s
MAC energy is 1.172/1.849pJ/MAC under 200MHz/1GHz according
to [43, 69, 78]. SRAM access energy is 0.027pJ/bit according to the
SRAM compiler. Memory access energy of LPDDR5 interface and
HB I/O is 7.0pJ/bit [62] and 0.88pJ/bit [55].

7.2 Comparison with Baselines
Wefirst compare the baselines’ performancewith a fixedH2-LLMde-
sign to demonstrate H2-LLM’s capability under different scenarios.
The selected architecture parameters are underlined in Table 5.
We adopt the data-centric dataflow for ID-NMP, ID-NMP+, and
H2-LLM. During exploration, we iterate the genetic algorithm for
100 rounds and sample 5k individuals per iteration. We select the
Top-50 individuals during each evolution.

The comparison results are summarized in Fig. 10. All results
are normalized to ID-NMP+. For end-to-end latency, we can find
that CP only achieves 27% (geomean) performance of ID-NMP+
due to its limited external bandwidth. The performance gap be-
comes larger when the batch size shrinks (i.e., with more severe
memory-intensive issue). For ID-NMP, although it can outperform
CP by 3.03× (geomean) under the batch size of 1/4, it only achieves
CP’s 71% (geomean) performance when the batch size comes to 16
due to its low computation capacity. Enhancing in-die NMP PE’s
computation capacity can achieve better performance. However,
the speedup of ID-NMP+ is only 1.76× (geomean) compared with
the better-performing results between CP and ID-NMP, constrained
by DRAM technology’s scarce resource provision. Compared with

H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-Bonding-based Low-Batch LLM Inference ISCA ’25, June 21–25, 2025, Tokyo, Japan

Batch Size = 4
HE SG LB LG

Batch Size = 16
HE SG LB LG

Batch Size = 4
HE SG LB LG

Batch Size = 16
HE SG LB LG

Batch Size = 16
HE SG LB LG

Batch Size = 4
HE SG LB LG

0.
05

0.
06

0.
10

0.
21

0.
07

0.
14

0.
27

0.
45

0.
21

0.
49

0.
87

0.
89

0.
06

0.
07

0.
11

0.
23

0.
08

0.
16

0.
30

0.
48

0.
23

0.
54

0.
94

0.
92

0
1
2
3
4

0.
05

0.
04

0.
06

0.
16

0.
05

0.
07

0.
13

0.
32

0.
14

0.
21

0.
39

 0.
65

0.
05

0.
05

0.
07

0.
18

0.
06

0.
08

0.
14

 0.
35

0.
16

0.
24

 0.
43

 0.
69

0.0
0.5
1.0
1.5
2.0 Batch Size = 1

HE SG LB LG

OPT 6.7B

N
or

m
.

Sp
ee

du
p

Attn-NMP Attn-NMP-Split FC-NMP CC-NMP H2-LLM

LLaMA3 8B

0.
04

0.
04

0.
05

0.
14

0.
05

0.
05

0.
09

0.
26

0.
12

0.
14

0.
26

 0.
56

0.
05

0.
04

0.
06

0.
16

0.
06

0.
06

0.
10

0.
28

0.
13

0.
16

0.
29

 0.
60

0.0
0.5
1.0
1.5
2.0

PaLM 8B

N
or

m
.

Sp
ee

du
p

N
or

m
.

Sp
ee

du
p

Batch Size = 1
HE SG LB LG

Batch Size = 1
HE SG LB LG

Figure 12: Comparison Against Existing Dataflow Designs.

0
1
2
3
4

OPT 6.7B
BS=1 BS=4 BS=16

N
or

m
.

Sp
ee

du
p

Attn-NMP Attn-NMP-Split FC-NMP CC-NMP H2-LLM

ID
-N

M
P+

LLaMA3 8B
BS=1 BS=4 BS=16

PaLM 8B
BS=1 BS=4 BS=16

Figure 13: Dataflow Designs on H2-LLM v.s. ID-NMP+.

ID-NMP+, H2-LLM can achieve 3.81× (geomean) speedup under
decoding-heavy HE/SG, 1.94× (geomean) speedup under prefill-
heavy LB/LG, and 2.71× (geomean) speedup across all test cases.

We also compare the decoding energy efficiency against these
baselines. In Fig. 10, we can find that CP reports poor energy effi-
ciency due to the high memory access energy of LPDDR5 interface.
ID-NMP’s decoding energy efficiency is slightly better than ID-
NMP+ because of the lower MAC energy. H2-LLM can achieve
1.48/1.54 × (geomean) better energy efficiency compared with ID-
NMP/ID-NMP+ owing to the on-chip SRAM buffer reuse.

We further conduct experiments when requests have different
lengths by mixing the four scenarios evenly. As shown in Fig. 11,
CP and ID-NMP only achieves 24% and 49% of ID-NMP+’s perfro-
mance (geomean), while H2-LLM outperforms ID-NMP+ by 3.24×
(geomean). H2-LLM still performs well under mixed scenarios.

7.3 Performance Analysis
Comparison with Existing Dataflow Designs: To analyse the
performance improvement brought by the data-centric dataflow
abstraction, we compare it against four existing dataflow designs: (1)
Offload all attention operators to NMP [24] (Attn-NMP). (2) Offload
all attention operators to NMP, and split FCs in the FFN block
between NMP and centralized processor [60] (Attn-NMP-Split). (3)
Offload all FC operators to NMP [39] (FC-NMP). (4) Computation-
centric dataflow abstraction, which constrains each operator to
either NMP or normal channels [47] (CC-NMP). We adopt the same
fixed H2-LLM architecture as Sec.7.2 for all dataflow designs. The
DSE budgets are also identical to Sec.7.2 for dataflow exploration.

The end-to-end latency comparison results are demonstrated
in Fig. 12. All results are normalized to FC-NMP. We can find

0%

25%

50%

75%

100%

0.0

0.5

1.0

1.5

2.0

OPT 6.7B
BS=1 BS=4 BS=16

LLaMA3 8B
BS=1 BS=4 BS=16 BS=1 BS=4 BS=16

PaLM 8B

HumanEval (HE) ShareGPT (SG) LongBench (LB) LooGLE (LG) Prefill Speedup

Pr
ef

ill
 R

at
io

Prefill Speedup

Figure 14: Prefill Latency Ratio and Prefill Speedup.

0.0
0.5
1.0
1.5
2.0
2.5

N
or

m
. S

pe
ed

up

Energy Efficiency

OPT 6.7B

HumanEval (HE) ShareGPT (SG) LongBench (LB) LooGLE (LG) Energy Efficiency

BS=1 BS=4 BS=16
LLaMA3 8B

BS=1 BS=4 BS=16
0.0
0.5
1.0
1.5
2.0
2.5

BS=1 BS=4 BS=16
PaLM 8B

Figure 15: Performance Analysis for Architecture DSE.

that Attn-NMP only achieves 14% (geomean) of FC-NMP’s perfor-
mance because it cannot utilize HB-NMP’s acceleration potential
for low-batch FC operators. Although operator fission can improve
Attn-NMP’s performance by 1.11× (geomean), fixed fission strategy
still cannot fully utilize HB-NMP. FC-NMP can attain comparable
performance to CC-NMP/H2-LLM on PaLM 8B and single-batch
OPT 6.7B/LLaMA3 8B. However, under MHA/GQA models with
larger batch size, the memory-intensive attention operators ex-
ecuted on the centralized processor incur substantial overhead,
hurting FC-NMP’s performance. CC-NMP reports 1.24× (geomean)
speedup against FC-NMP by exploiting the acceleration opportunity
provided by memory-intensive decoding operators, but its prefill-
unaware nature mitigates the performance improvement. It behaves
5% (geomean) poorer than FC-NMP on PaLM 8B under the prefill-
heavy LooGLE dataset. By fully exploring operator mapping and
operator fission, H2-LLM’s data-centric dataflow abstraction can
achieve 1.37×/1.11× speedup compared with FC-NMP/CC-NMP.

In Fig. 13, we compare all dataflow designs’ speedup (geomean
across four scenarios) against ID-NMP+. Attn-NMP(-Split) only
achieves 28% (31%) of ID-NMP+’s performance (geomean). Although
FC/CC-NMP outperforms ID-NMP+ by 1.98×/2.45× (geomean),
H2-LLM can further achieve better performance (2.71× geomean
speedup). Therefore, dataflow exploration is vital for fully unleash-
ing hybrid bonding’s acceleration capability against in-die NMP.

To further demonstrate data-centric dataflow abstraction’s per-
formance improvement compared with CC-NMP, we analyse the
proportion of prefill latency in H2-LLM’s end-to-end latency and its
prefill speedup against CC-NMP. As Fig. 14 shows, after decoding
is fully accelerated, prefill takes up 12%-26%/36%-90% end-to-end
latency under decoding-heavy/prefill-heavy cases. By improving
the prefill latency by 1.27× (geomean), our data-centric dataflow
abstraction can provide better execution strategy and end-to-end
performance compared with prefill-unaware CC-NMP.
Architecture Exploration Analysis: To demonstrate H2-LLM’s
performance upper bound under different scenarios, we compare
the performance of the fixed H2-LLM design used in Sec. 7.2 against
the optimal performance after fully exploring the whole design
space in each test case. During full exploration, we enlarge the
population size to 50k and keep other DSE parameters unchanged.

As illustrated in Fig. 15, we can find that compared with the
fixed design, H2-LLM can further gain 1.38× (geomean) speedup

ISCA ’25, June 21–25, 2025, Tokyo, Japan Cong Li et al.

0%

5%

10%

15%

20%
HumanEval (HE) ShareGPT (SG) LongBench (LB) LooGLE (LG)

Sy
nc

. T
ra

ns
. R

at
io

OPT 6.7B
BS=1 BS=4 BS=16

LLaMA3 8B
BS=1 BS=4 BS=16

PaLM 8B
BS=1 BS=4 BS=16

Figure 16: Synchronization and Data Transfer Overhead.

0
1
2
3
4
5
6

N
or

m
. O

ve
rh

ea
d

(𝑇𝑇𝐾𝐾 ,𝑇𝑇𝑁𝑁)

Q/K/V/O FC Bottom FC Top FC Attn. QK Attn. SV

(1
,8

)

(2
,4

)

(4
,2

)

(8
,1

)

(1
,8

)

(2
,4

)

(4
,2

)

(8
,1

)

(1
,8

)

(2
,4

)

(4
,2

)

(8
,1

)

(1
,8

)

(2
,4

)

(4
,2

)

(8
,1

)

(1
,8

)

(2
,4

)

(4
,2

)

(8
,1

)

Input Transfer Output Transfer Optimal TilingH2-LLM’s Tiling

1.5 × 2.8 × 2.7 ×
5.4 × 5.3 ×

Figure 17: Comparison among Different Tiling Factors.

and 1.74× (geomean) decoding energy efficiency after full architec-
ture DSE. Under small batch size (i.e., batch size = 1), the designs
with higher HB I/O bandwidth can outperform the fixed design
since all operators are memory-intensive. Under medium batch
size (i.e., batch size = 4), the fixed design can reach near-optimal
performance with a moderate computation-bandwidth ratio. Under
large batch size (i.e., batch size = 16), for OPT 6.7B, the designs with
higher computation capacity can outperform the fixed design due
to the increased computation capacity requirement. For LLaMA3
8B and PaLM 8B, the performance gap shrinks owing to the oper-
ator parallelism exploration brought by the data-centric dataflow
abstraction. In Sec. 7.4, we will further analyse the effect of different
dimensions in H2-LLM’s architecture design space.
Tiling Overhead analysis: In Fig. 16, we analyse H2-LLM’s syn-
chronization and pre-/post-processing (data transfer) overhead,
which accounts for 1.6%-15.7% across benchmarks. The overhead
is dominated by data movement in pre-/post-processing since syn-
chronization bubble is effectively eliminated by dataflow explo-
ration. To analyse tiling factor exploration’s effect on overhead
mitigation, we compare different tiling factors on 8 NMP channels
for OPT’s operators in Fig. 17 (context length 2048, batch size 4),
where the overheads are normalized to each operator’s minimal
ones. The worst tiling factors can incur 1.5×-5.4× higher over-
head than the optimal factors. By adopting the selection process in
Sec. 4.2, H2-LLM can adopt tiling factors with minimal overhead.

7.4 DSE Analysis
In this sub-section, we explore on different dimensions in H2-LLM’s
architecture design space and summarize several architectural impli-
cations for future architecture design. Since all models demonstrate
similar trends to discrete architecture parameters, we showcase the
analysis on LLaMA3 8B without loss of generality. We adopt end-
to-end performance for analysis because operator performance is
an intermediate result, which cannot accurately reveal these trends.
The DSE budget of each architecture design is identical to Sec. 7.2.
Computation-Bandwidth Trade-off: We first analyse the effect
of computation-bandwidth trade-off to decoding performance. Dur-
ing exploration, we fix NMP channel number to 4 and choose the
FPU configs providing max computation capacity under each HB
I/O bandwidth, which are marked as bold in Table 6. The input
global/weight/output buffer sizes are fixed to 32KB/32KB/4KB.

Ba
nd

w
id

th
 (G

B/
s)

(FPU Num., Freq.(GHz))

BS=1 Norm. Perf. and Rank

Ba
nd

w
id

th
 (G

B/
s)

(FPU Num., Freq.(GHz))

BS=4 Norm. Perf. and Rank

Ba
nd

w
id

th
 (G

B/
s)

(FPU Num., Freq.(GHz))

BS=16 Norm. Perf. and Rank

(# 7) (# 7) (# 7) (# 7)

(# 5) (# 5)(# 4)

(# 3) (# 2)

(# 1)

(# 9) (# 9) (# 7) (# 7)

(# 4) (# 4)(# 6)

(# 3) (# 1)

(# 2)

(# 10) (# 9) (# 8) (# 7)

(# 3) (# 2)(# 5)

(# 4) (# 1)

(# 5)

Figure 18: Computation Bandwidth Trade-off Analysis.

4 8 16 32 64 128
Input Buffer Size (KB)

0.95

1.00

1.05

1.10

1.15

0.5

1.0

1.5

2.0

2.5

4 8 16 32 64 128
Weight Buffer Size (KB)

N
or

m
. P

er
fo

rm
an

ce

0.25 0.5 1 2 4 8
Output Buffer Size (KB)

Batch Size = 1 Batch Size = 4 Batch Size = 16

0.9

1.0

1.1

1.2

1.3

Figure 19: Performance Analysis of Buffer Size Exploration.

In Fig. 18, we compare all legal designs’ average decoding per-
formance on four scenarios and list their rankings. The decoding
performance is in proportion to HB I/O bandwidth under single-
batch inference. When batch size is 4, although we can gain better
performance by enlarging the HB I/O bandwidth from 6.4GB/s to
25.6GB/s, the performance cannot attain further improvement from
25.6GB/s to 51.2GB/s. This is because the high controller area cost
constrains the computation capacity. When batch size is 16, the
design with moderate computation-bandwidth ratio can achieve the
optimal performance. The limitation imposed by low computation
capacity becomesmore pronounced under 51.2GB/s HB I/O. Besides,
although we can equip the highest computation capacity under 6.4
GB/s HB I/O, we can hardly get performance improvement due to
the limited bandwidth. Balancing computation and bandwidth is
vital for steady performance across scenarios (e.g., (8FPUs@0.6GHz,
25.6GB/s) in Fig.18, with the highest average ranking).

Takeaway 1: With the increase of batch size (operator arith-
metic intensity), the HB-NMP architecture should be designed
with a suitable emphasis on computational resources.
Takeaway 2: Balancing computation-capacity ratio is neces-
sary to prevent resource over-provision, thereby avoiding a
stagnation in performance improvement.

SRAM Buffer Size: Then, we analyse how HB-NMP’s buffer sizes
affect the decoding performance. By default, the H2-LLM device
equips 4 NMP channels. Each PE contains 8 FPUs running at 0.6GHz,
along with 25.6GB/s HB I/O bandwidth. The buffer size design space
is identical to Table 5. The sizes of input global/weight/output buffer
are fixed to 32KB/32KB/4KB when they are unexplored.

For each buffer size, we evaluate the average decoding perfor-
mance on the four datasets under different batch sizes. As shown
in Fig. 19, increasing the input global/output buffer size can gain
1.05-1.18×/1.09-2.26× speedup under different batch sizes. With the
batch size increasing, the benefits of increasing the input global/out-
put buffer size become more pronounced. This is because the data
volume of input/output tensors is in proportion to the batch size. En-
larging the buffer size can avoid transferring larger tiles repeatedly,
thus improving the performance. On the other hand, increasing the
weight buffer size can bring up to 1.15×/1.12× speedup under the

H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-Bonding-based Low-Batch LLM Inference ISCA ’25, June 21–25, 2025, Tokyo, Japan

Table 7: Resource Distribution Exploration Setup
NMP Channel Number 2 4 8

per PE Setup 8 FPUs @ 0.6GHz
25.6GB/s HB I/O

4 FPUs @ 0.6GHz
12.8GB/s HB I/O

2 FPUs @ 0.6GHz
6.4GB/s HB I/O

0.5

1.0

1.5

2.0

2.5

N
or

m
. P

er
fo

rm
an

ce

HumanEval (HE) ShareGPT (SG) LongBench (LB) LooGLE (LG)

BS = 16

2 4 8
NMP Channel Num.

0

1

2

3

4

2 4 8
NMP Channel Num.

BS = 4
0

1

2

3

4

2 4 8
NMP Channel Num.

BS = 1

Figure 20: Performance Analysis of Resource Distribution.

batch size of 1/4 but cannot bring better performance when batch
size is 16. This is because weight reuse increases along with the
enlargement of batch size, bringing better overlap between compu-
tation and memory access. When batch size is small, enlarging the
weight buffer size can improve bandwidth utilization, thus reducing
the non-overlapped weight transfer overhead. Therefore, allocating
large enough buffer sizes is necessary to improve the performance
(e.g., 32/32/4KB in Fig. 19, minimal sizes saturating the speedup).

Takeaway 3: Increasing HB-NMP’s buffer size appropriately
is beneficial to the performance.
Takeaway 4: With the increase of batch size, the decoding
performance becomes more sensitive to input/output buffer
size, while its sensitivity to the weight buffer size diminishes.

NMPResource Distribution:We analyse how NMP channel num-
ber affects the performance given the resource budget. As listed in
Table 7, we fix the total computation & bandwidth budgets and dis-
tribute them to 2/4/8 NMP channels. The input global/weight/output
buffer sizes are fixed to 32KB/32KB/4KB, which are adequately large
to eliminate their influence on performance.

Since the NMP channel number affects operator placement,
thereby impacting both prefill and decoding performance, We com-
pare the four datasets’ end-to-end performance under different
batch sizes. From the results shown in Fig. 20, we can find that in-
creasing NMP channel number from 2 to 4 can effectively enhance
the performance because the increased NMP memory capacity al-
lows us to assign more NMP operators and better utilize HB-NMP’s
capability. However, further increasing the channel number can
hardly bring speedup, and even hurts the performance under the
batch size of 16. The reasons are two-fold: First, each channel’s pro-
cessing capability shrinks when we equip more channels, hindering
further performance improvement. Second, configuring all channels
as NMP channels prevents the adoption of operator fission.

Takeaway 5: Distributing NMP resources across more chan-
nels enables the assignment of more NMP operators, which is
beneficial to the performance.
Takeaway 6: Adequate NMP channel allocation is necessary
to avoid wimpy per-channel processing capability under the
given resource budget and better utilize operator fission.

Centralized Processor Exploration: Finally, we explore the rela-
tion between centralized processor’s computation capability and

0

2

4

6

8

10

N
or

m
. P

er
fo

rm
an

ce BS = 1

0

2

4

6

8

10
BS = 4

CPU 64 128 256GPU
Comp. Capacity (TFLOPS)

CPU 64 128 256GPU
Comp. Capacity (TFLOPS)

0

2

4

6

8

10

CPU 64 128 256GPU
Comp. Capacity (TFLOPS)

BS = 16

HumanEval (HE) ShareGPT (SG) LongBench (LB) LooGLE (LG)

Figure 21: Performance Analysis of Centralized Processor.

performance by adjusting the systolic array size. Since the compo-
nents of CPUs/GPUs can also be abstracted as tensor processors
together with control logic, we adopt systolic array size with equiv-
alent computation capability to represent their setups (32TFLOPS of
Intel Sapphire Rapids CPU with AMX extenstion [38], 312TFLOPS
of A100 GPU). As shown in Fig. 21, increasing the computation
capacity can improve the performance, especially in prefill-heavy
scenarios. This is because prefill can be effectively accelerated by
more powerful centralized processor, although decoding gains lit-
tle speedup. Therefore, equipping a powerful enough centralized
processor is necessary to accelerate end-to-end inference.

8 Conclusion
This paper proposes H2-LLM, the first hybrid-bonding-based het-
erogeneous accelerator for edge-side low-batch LLM inference.
H2-LLM comprehensively considers hybrid bonding technology’s
computation-bandwidth trade-off in the architecture design space
and adopts the data-centric dataflow abstraction to fully utilize the
heterogeneous architecture for low-batch LLM inference. Based on
the co-design space, H2-LLM’s DSE framework can find out the op-
timal design for different scenarios. Compared with existing in-die
NMP-based heterogeneous accelerators, H2-LLM achieves 2.72×
geomean speedup and 1.48× geomean better energy efficiency.

Acknowledgments
We appreciate the valuable feedback and constructive comments
from all reviewers. This work is supported by Beijing Natural Sci-
ence Foundation L243001, National Natural Science Foundation of
China (Grant No. 62032001), and 111 Project (B18001).

A Artifact Appendix
A.1 Abstract
This artifact contains the source code of H2-LLM’s data-centric
dataflow exploration framework, including the implementation of
an onnx-based model parser and the genetic-algorithm-based explo-
ration engine. In addition, this artifact provides config files, scripts,
and README instructions to reproduce the key experimental re-
sults reported in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Data-centric dataflow exploration algorithm for NMP-
based heterogeneous LLM accelerators.

• Program: Python3 and C++ (for some dependencies).
• Compilation: Python ≥ 3.10 and cmake ≥ 3.12.
• Run-time environment: Ubuntu 20.04.6 LTS (GNU/Linux 5.11.0-
43-generic x86_64) with Python ≥ 3.10.

• Hardware: No specific hardware is required. However, it is recom-
mended to conduct experiments on a CPU server with more than
50 cores for evaluation efficiency.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Cong Li et al.

• Metrics: Normalized speedup .
• Output: Resulting figures of key experiments.
• Experiments: Scripts are included in the ae folder. Detailed instruc-
tions are provided in ae/README.md.

• How much disk space required (approximately)?: About 3GB.
• How much time is needed to prepare workflow (approximat-
ely)?: About 30 minutes (depending on the time consumption of
installing Python packages).

• How much time is needed to complete experiments (approxi-
mately)?: About 9 hours.

• Publicly available?: Yes. Github link: https://github.com/leesou/
H2-LLM-ISCA-2025.

• Code licenses (if publicly available)?: Apache-2.0 License.
• Workflow automation framework used?: No.
• Archived (provide DOI)?: Yes. DOI link: https://doi.org/10.5281/
zenodo.15078697.

A.3 Description
A.3.1 How to access. The code is publicly available at https://
github.com/leesou/H2-LLM-ISCA-2025 and is archived on https:
//doi.org/10.5281/zenodo.15078697. We recommend obtaining the
artifact from Github and using the submodule mechanism to install
third-party dependencies.

A.3.2 Hardware dependencies. No specific hardware is required.
However, we recommend conducting experiments on a CPU server
with more than 50 cores for evaluation efficiency.

A.3.3 Software dependencies. The scripts need to run on Linux
systems with Python ≥ 3.10 and cmake ≥ 3.12. Please refer to
README.md for Python package installation instructions.

A.4 Installation
Installation instructions are provided in the artifact. Please check
the README.md in the project folder for more details.

A.5 Experiment workflow
Experiment scripts are provided in the ae folder. Please check
ae/README.md for more details.

A.6 Evaluation and expected results
After finishing execution following the instructions in ae/README
.md, all plotted results are saved in ae/plots folder, which cor-
respond to the results in Figure 10 (upper-half speedup compar-
ison), 12, 13, 14, and 15 (bar-graph speedup comparison). Since
we cannot directly provide the simulator due to the data privacy
issue, we adopt a rough performance model to estimate NMP/NPU
operators’ latency, and skip the evaluation of energy-related re-
sults during the AE process. However, the DSE framework itself
supports the evaluation of both latency and energy by integrating
simulators according to our preserved interface. The results can
be slightly different from that in the paper, but they can still prove
H2-LLM’s superiority against all baselines. We also provide refer-
ence plots in ae/plots_ref folder. Please check ae/README.md for
more information on result validation.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-
badging-current

• https://cTuning.org/ae

References
[1] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico

Lebrón, and Sumit Sanghai. 2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv preprint arXiv:2305.13245
(2023).

[2] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli,
Ruxandra Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien
Launay, Quentin Malartic, Daniele Mazzotta, Badreddine Noune, Baptiste Pannier,
and Guilherme Penedo. 2023. The Falcon Series of Open Language Models.
arXiv:2311.16867 [cs.CL] https://arxiv.org/abs/2311.16867

[3] Amazon. [n. d.]. Bedrock. https://aws.amazon.com/bedrock/.
[4] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,

Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji
Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men,
Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng
Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang,
Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. Qwen Technical
Report. arXiv:2309.16609 [cs.CL] https://arxiv.org/abs/2309.16609

[5] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang,
Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. 2023. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508 (2023).

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners.
Advances in neural information processing systems 33 (2020), 1877–1901.

[7] Thomas Burd, Wilson Li, James Pistole, Srividhya Venkataraman, Michael Mc-
Cabe, Timothy Johnson, James Vinh, Thomas Yiu, Mark Wasio, Hon-Hin Wong,
Daryl Lieu, Jonathan White, Benjamin Munger, Joshua Lindner, Javin Olson,
Steven Bakke, Jeshuah Sniderman, Carson Henrion, Russell Schreiber, Eric Busta,
Brett Johnson, Tim Jackson, Aron Miller, Ryan Miller, Matthew Pickett, Aaron
Horiuchi, Josef Dvorak, Sabeesh Balagangadharan, Sajeesh Ammikkallingal, and
Pankaj Kumar. 2022. Zen3: The AMD 2 nd-Generation 7nm x86-64 Micropro-
cessor Core. In 2022 IEEE International Solid-State Circuits Conference (ISSCC),
Vol. 65. IEEE, 1–3.

[8] Jingwei Cai, Zuotong Wu, Sen Peng, Yuchen Wei, Zhanhong Tan, Guiming Shi,
Mingyu Gao, and Kaisheng Ma. 2024. Gemini: Mapping and Architecture Co-
exploration for Large-scale DNN Chiplet Accelerators. In 2024 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 156–171.

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374 (2021).

[10] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to optimize
tensor programs. Advances in Neural Information Processing Systems 31 (2018).

[11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, HenrykMichalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,

https://github.com/leesou/H2-LLM-ISCA-2025
https://github.com/leesou/H2-LLM-ISCA-2025
https://doi.org/10.5281/zenodo.15078697
https://doi.org/10.5281/zenodo.15078697
https://github.com/leesou/H2-LLM-ISCA-2025
https://github.com/leesou/H2-LLM-ISCA-2025
https://doi.org/10.5281/zenodo.15078697
https://doi.org/10.5281/zenodo.15078697
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae
https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2311.16867
https://aws.amazon.com/bedrock/
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2309.16609

H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-Bonding-based Low-Batch LLM Inference ISCA ’25, June 21–25, 2025, Tokyo, Japan

Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language Modeling
with Pathways. arXiv preprint arXiv:2204.02311 (2022).

[12] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan
Liu, Yu Wang, Yuan Xie, and Huazhong Yang. 2018. Graphh: A processing-in-
memory architecture for large-scale graph processing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 38, 4 (2018), 640–653.

[13] Fabrice Devaux. 2019. The true processing in memory accelerator. In 2019 IEEE
Hot Chips 31 Symposium (HCS). IEEE Computer Society, 1–24.

[14] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sra-
vankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh
Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra,
Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song,
Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab Al-
Badawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank
Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail,
Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann,
Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes,
Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika
Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens
van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish
Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Made-
line Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas,
Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay
Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi,
Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing
He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ri-
cardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel,
Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva,
Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean
Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath
Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin
Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Vik-
tor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong
Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon,
Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado,
Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben
Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon
Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Bur-
ton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu,
Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, DannyWyatt, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss,
Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine
Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Es-
teban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian,
Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang,
Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter
Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein,

Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,
Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg,
Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally,
Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman
Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian
Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang,
Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta,
Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chin-
tala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian,
Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy
Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vítor Albiero, Vlad Ionescu, Vlad
Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang,
Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang,
Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye
Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3
herd of models. arXiv preprint arXiv:2407.21783 (2024).

[15] Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong, Jae Sung Park, Bidipta
Sarkar, Rohan Taori, Yusuke Noda, Demetri Terzopoulos, Yejin Choi, Katsushi
Ikeuchi, Hoi Vo, Li Fei-Fei, and Jianfeng Gao. 2024. Agent ai: Surveying the
horizons of multimodal interaction. arXiv preprint arXiv:2401.03568 (2024).

[16] Bai Fujun, Jiang Xiping, Wang Song, Yu Bing, Tan Jie, Zuo Fengguo, Wang
Chunjuan, Wang Fan, Long Xiaodong, Yu Guoqing, Fu Ni, Li Qiannan, Li Hua,
Wang Kexin, Duan Huifu, Bai Liang, Jia Xuerong, Li Jin, Li Mei, Wang Zhengwen,
Hu Sheng, Zhou Jun, Zhan Qiong, Sun Peng, Yang Daohong, Cheichan Kau,
David Yang, Ching-Sung Ho, Sun Hongbin, Lv Hangbing, Liu Ming, Kang Yi, and
Ren Qiwei. 2020. A stacked embedded DRAM array for LPDDR4/4X using hybrid
bonding 3D integration with 34GB/s/1Gb 0.88 pJ/b logic-to-memory interface. In
2020 IEEE International Electron Devices Meeting (IEDM). IEEE, 6–6.

[17] Github. 2025. Copilot. https://github.com/features/copilot.
[18] Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego

Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai
Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei
Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang,
Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang,
Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan
Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang.
2024. ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4
All Tools. arXiv:2406.12793

[19] Google. 2023. Bard. https://bard.google.com/.
[20] Peng Gu, Xinfeng Xie, Yufei Ding, Guoyang Chen, Weifeng Zhang, Dimin Niu,

and Yuan Xie. 2020. iPIM: Programmable in-memory image processing accelera-
tor using near-bank architecture. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 804–817.

[21] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim, Il Park,
Mithuna Thottethodi, and TN Vijaykumar. 2020. Newton: A DRAM-maker’s
accelerator-in-memory (AiM) architecture for machine learning. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
372–385.

[22] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[23] Laura Birka Hensel, Nutchanon Yongsatianchot, Parisa Torshizi, Elena Minucci,
and Stacy Marsella. 2023. Large language models in textual analysis for ges-
ture selection. In Proceedings of the 25th International Conference on Multimodal
Interaction. 378–387.

https://github.com/features/copilot
https://arxiv.org/abs/2406.12793
https://bard.google.com/

ISCA ’25, June 21–25, 2025, Tokyo, Japan Cong Li et al.

[24] Guseul Heo, Sangyeop Lee, Jaehong Cho, Hyunmin Choi, Sanghyeon Lee,
Hyungkyu Ham, Gwangsun Kim, Divya Mahajan, and Jongse Park. 2024. Ne-
upims: Npu-pim heterogeneous acceleration for batched llm inferencing. In
Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3. 722–737.

[25] JH Holland. 1992. Genetic Algorithms. Scientific American (1992).
[26] SeongminHong, SeungjaeMoon, Junsoo Kim, Sungjae Lee, Minsub Kim, Dongsoo

Lee, and Joo-Young Kim. 2022. Dfx: A low-latency multi-fpga appliance for accel-
erating transformer-based text generation. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 616–630.

[27] Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu, Xusheng Chen, Tao Xie,
Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou Shan. 2024.
Memserve: Context caching for disaggregated llm serving with elastic memory
pool. arXiv preprint arXiv:2406.17565 (2024).

[28] Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang
Chen, Hao Feng, Chenxi Wang, Sa Wang, Yungang Bao, Ninghui Sun, and Yizhou
Shan. 2024. Inference without interference: Disaggregate llm inference for mixed
downstream workloads. arXiv preprint arXiv:2401.11181 (2024).

[29] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. 2022. Lan-
guage models as zero-shot planners: Extracting actionable knowledge for embod-
ied agents. In International conference on machine learning. PMLR, 9118–9147.

[30] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy
Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Tomas Jackson, Noah Brown, Linda Luu, Sergey Levine, Karol Hausman, and
Brian Ichter. 2022. Inner monologue: Embodied reasoning through planning with
language models. arXiv preprint arXiv:2207.05608 (2022).

[31] Wenqin Huangfu, Xueqi Li, Shuangchen Li, Xing Hu, Peng Gu, and Yuan Xie.
2019. Medal: Scalable dimm based near data processing accelerator for dna
seeding algorithm. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 587–599.

[32] Mohamed Ibrahim, Shaizeen Aga, Ada Li, Suchita Pati, and Mahzabeen Islam.
2024. JIT-Q: Just-in-time Quantization with Processing-In-Memory for Efficient
ML Training. Proceedings of Machine Learning and Systems 6 (2024), 46–59.

[33] Xiping Jiang, Fengguo Zuo, Song Wang, Xiaofeng Zhou, Yubing Wang, Qi Liu,
Qiwei Ren, and Ming Liu. 2022. A 1596-GB/s 48-Gb stacked embedded DRAM
384-core SoC with hybrid bonding integration. IEEE Solid-State Circuits Letters 5
(2022), 110–113.

[34] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo Jiang,
Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2024.
{MegaScale}: Scaling large language model training to more than 10,000 {GPUs}.
In 21st USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). 745–760.

[35] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B.
Jablin, George Kurian, James Laudon, Sheng Li, Peter C. Ma, Xiaoyu Ma, Thomas
Norrie, Nishant Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and David A.
Patterson. 2021. Ten lessons from three generations shaped google’s tpuv4i:
Industrial product. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 1–14.

[36] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku
Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S Lee, et al.
2020. Recnmp: Accelerating personalized recommendation with near-memory
processing. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 790–803.

[37] Guhyun Kim, Jinkwon Kim, Nahsung Kim, Woojae Shin, Jongsoon Won, Hyunha
Joo, Haerang Choi, Byeongju An, Gyeongcheol Shin, Dayeon Yun, Jeongbin
Kim, Changhyun Kim, Ilkon Kim, Jaehan Park, Yosub Song, Byeongsu Yang,
Hyeongdeok Lee, Seungyeong Park, Wonjun Lee, Seonghun Kim, Yonghoon
Park, Yousub Jung, Gi-Ho Park, and Euicheol Lim. 2024. SK Hynix AI-Specific
Computing Memory Solution: From AiM Device to Heterogeneous AiMX-xPU
System for Comprehensive LLM Inference. In 2024 IEEE Hot Chips 36 Symposium
(HCS). IEEE Computer Society, 1–26.

[38] Hyungyo Kim, Gaohan Ye, Nachuan Wang, Amir Yazdanbakhsh, and Nam Sung
Kim. 2024. Exploiting Intel® Advanced Matrix Extensions (AMX) for Large
Language Model Inference. IEEE Computer Architecture Letters (2024).

[39] Jin Hyun Kim, Yuhwan Ro, Jinin So, Sukhan Lee, Shinhaeng Kang, YeonGon Cho,
Hyeonsu Kim, Byeongho Kim, Kyungsoo Kim, Sangsoo Park, Jin-Seong Kim,
Sanghoon Cha, Won-Jo Lee, Jin Jung, Jonggeon Lee, Jieun Lee, Joon-Ho Song,
Seungwon Lee, Jeonghyeon Cho, Jaehoon Yu, and Kyomin Sohn. 2023. Samsung
pim/pnm for transfmer based ai: Energy efficiency on pim/pnm cluster. In 2023
IEEE Hot Chips 35 Symposium (HCS). IEEE Computer Society, 1–31.

[40] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael
Pellauer, and Angshuman Parashar. 2020. Maestro: A data-centric approach to
understand reuse, performance, and hardware cost of dnn mappings. IEEE micro
40, 3 (2020), 20–29.

[41] Yongkee Kwon, Guhyun Kim, Nahsung Kim, Woojae Shin, Jongsoon Won,
Hyunha Joo, Haerang Choi, Byeongju An, Gyeongcheol Shin, Dayeon Yun, Jeong-
bin Kim, Changhyun Kim, Ilkon Kim, Jaehan Park, Chanwook Park, Yosub Song,
Byeongsu Yang, Hyeongdeok Lee, Seungyeong Park, Wonjun Lee, Seongju Lee,
Kyuyoung Kim, Daehan Kwon, Chunseok Jeong, John Kim, Euicheol Lim, and
Junhyun Chun. 2023. Memory-Centric Computing with SK Hynix’s Domain-
Specific Memory. In 2023 IEEE Hot Chips 35 Symposium (HCS). IEEE Computer
Society, 1–26.

[42] Jeston AI Lab. 2025. Text Generation Webui. https://www.jetson-ai-lab.com/
tutorial_text-generation.html.

[43] Suk Han Lee, Shinhaeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, Jinhyun
Kim, Seongil O, Anand Iyer, DavidWang, Kyomin Sohn, and Nam Sung Kim. 2021.
Hardware architecture and software stack for PIM based on commercial DRAM
technology: Industrial product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 43–56.

[44] Seong Ju Lee, Kyu-Young Kim, Sanghoon Oh, Joonhong Park, Gimoon Hong,
Dong Yoon Ka, Kyu-Dong Hwang, Jeongje Park, Kyeong Pil Kang, Jungyeon Kim,
Junyeol Jeon, Nahsung Kim, Yongkee Kwon, Kornijcuk Vladimir, Woojae Shin,
Jongsoon Won, Minkyu Lee, Hyunha Joo, Haerang Choi, Jaewook Lee, Donguc
Ko, Younggun Jun, Keewon Cho, Ilwoong Kim, Choungki Song, Chunseok Jeong,
Dae-Han Kwon, Jieun Jang, Il Park, Junhyun Chun, and Joohwan Cho. 2022. A
1ynm 1.25 V 8Gb, 16Gb/s/pin GDDR6-based accelerator-in-memory supporting
1TFLOPS MAC operation and various activation functions for deep-learning
applications. In 2022 IEEE International Solid-State Circuits Conference (ISSCC),
Vol. 65. IEEE, 1–3.

[45] Cong Li, Zhe Zhou, Xingchen Li, Guangyu Sun, and Dimin Niu. 2023. NMEx-
plorer: An efficient exploration framework for dimm-based near-memory tensor
reduction. In 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[46] Cong Li, Zhe Zhou, Yang Wang, Fan Yang, Ting Cao, Mao Yang, Yun Liang, and
Guangyu Sun. 2024. PIM-DL: Expanding the Applicability of Commodity DRAM-
PIMs for Deep Learning via Algorithm-System Co-Optimization. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 879–896.

[47] Cong Li, Zhe Zhou, Size Zheng, Jiaxi Zhang, Yun Liang, and Guangyu Sun.
2024. SpecPIM: Accelerating Speculative Inference on PIM-Enabled System via
Architecture-Dataflow Co-Exploration. In Proceedings of the 29th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3. 950–965.

[48] Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. 2023. LooGLE:
Can Long-Context Language Models Understand Long Contexts? arXiv preprint
arXiv:2311.04939 (2023).

[49] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu,
Jiacheng Liu, Wenxing Xu, Xiang Wang, Yi Sun, Rui Kong, Yile Wang, Hanfei
Geng, Jian Luan, Xuefeng Jin, Zilong Ye, Guanjing Xiong, Fan Zhang, Xiang
Li, Mengwei Xu, Zhijun Li, Peng Li, Yang Liu, Ya-Qin Zhang, and Yunxin Liu.
2024. Personal llm agents: Insights and survey about the capability, efficiency
and security. arXiv preprint arXiv:2401.05459 (2024).

[50] Liu Liu, Jilan Lin, Zheng Qu, Yufei Ding, and Yuan Xie. 2021. ENMC: Extreme
Near-Memory Classification via Approximate Screening. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 1309–1322.

[51] Liqiang Lu, Naiqing Guan, Yuyue Wang, Liancheng Jia, Zizhang Luo, Jieming
Yin, Jason Cong, and Yun Liang. 2021. Tenet: A framework for modeling tensor
dataflow based on relation-centric notation. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 720–733.

[52] Haocong Luo, Yahya Can Tu, F Nisa Bostancı, Ataberk Olgun, A Giray Ya, and
Onur Mutlu. 2023. Ramulator 2.0: A Modern, Modular, and Extensible DRAM
Simulator. IEEE Computer Architecture Letters (2023).

[53] Kai Mei, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and Yongfeng Zhang.
2024. AIOS: LLM agent operating system. arXiv e-prints, pp. arXiv–2403 (2024).

[54] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. Codegen: An open large language
model for codewithmulti-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

[55] Dimin Niu, Shuangchen Li, Yuhao Wang, Wei Han, Zhe Zhang, Yijin Guan,
Tianchan Guan, Fei Sun, Fei Xue, Lide Duan, Yuanwei Fang, Hongzhong Zheng,
Xiping Jiang, Song Wang, Fengguo Zuo, Yubing Wang, Bing Yu, Qiwei Ren, and
Yuan Xie. 2022. 184QPS/W 64Mb/mm 2 3D logic-to-DRAM hybrid bonding
with process-near-memory engine for recommendation system. In 2022 IEEE
International Solid-State Circuits Conference (ISSCC), Vol. 65. IEEE, 1–3.

[56] NVIDIA. 2025. Jetson Modules. https://developer.nvidia.com/embedded/jetson-
modules.

[57] OpenAI. 2022. Chatgpt. https://openai.com/blog/chatgpt.
[58] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[59] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,

Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to

https://www.jetson-ai-lab.com/tutorial_text-generation.html
https://www.jetson-ai-lab.com/tutorial_text-generation.html
https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-modules
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774

H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-Bonding-based Low-Batch LLM Inference ISCA ’25, June 21–25, 2025, Tokyo, Japan

dnn accelerator evaluation. In 2019 IEEE international symposium on performance
analysis of systems and software (ISPASS). IEEE, 304–315.

[60] Jaehyun Park, Jaewan Choi, Kwanhee Kyung, Michael Jaemin Kim, Yongsuk
Kwon, Nam Sung Kim, and Jung Ho Ahn. 2024. AttAcc! Unleashing the Power of
PIM for Batched Transformer-based GenerativeModel Inference. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 103–119.

[61] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed
Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient generative llm inference
using phase splitting. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). IEEE, 118–132.

[62] J. Thomas Pawlowski. 2019. Prospects for Memory.
[63] Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan

Huang, Lars Liden, Zhou Yu, Weizhu Chen, and Jianfeng Gao. 2023. Check your
facts and try again: Improving large language models with external knowledge
and automated feedback. arXiv preprint arXiv:2302.12813 (2023).

[64] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu, Weimin
Zheng, and Xinran Xu. 2024. Mooncake: Kimi’s KVCache-centric Architecture
for LLM Serving. arXiv e-prints (2024), arXiv–2407.

[65] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
blog 1, 8 (2019), 9.

[66] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, and
Matthias Gallé. 2022. Bloom: A 176b-parameter open-access multilingual lan-
guage model. arXiv preprint arXiv:2211.05100 (2022).

[67] Noam Shazeer. 2019. Fast transformer decoding: One write-head is all you need,
2019. URL https://arxiv. org/abs (2019), 23.

[68] Noam Shazeer. 2020. Glu variants improve transformer. arXiv preprint
arXiv:2002.05202 (2020).

[69] Hyunsung Shin, Dongyoung Kim, Eunhyeok Park, Sungho Park, Yongsik Park,
and Sungjoo Yoo. 2018. McDRAM: Low latency and energy-efficient matrix
computations in DRAM. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37, 11 (2018), 2613–2622.

[70] Sharegpt teams. 2023. ShareGPT Vicuna unfiltered. https://huggingface.co/
datasets/anon8231489123/ShareGPT_Vicuna_unfiltered.

[71] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971 (2023).

[72] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288
(2023).

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems (2017).

[74] Ben Wang. 2021. Mesh-Transformer-JAX: Model-Parallel Implementation of
Transformer Language Model with JAX. https://github.com/kingoflolz/mesh-
transformer-jax.

[75] Dingmin Wang, Qiuyuan Huang, Matthew Jackson, and Jianfeng Gao. 2024.
Retrieve What You Need: A Mutual Learning Framework for Open-domain
Question Answering. Transactions of the Association for Computational Linguistics
12 (2024), 247–263.

[76] Yuxin Wang, Yuhan Chen, Zeyu Li, Zhenheng Tang, Rui Guo, Xin Wang, Qiang
Wang, Amelie Chi Zhou, and Xiaowen Chu. 2024. Towards Efficient and Reliable
LLM Serving: A Real-World Workload Study. arXiv preprint arXiv:2401.17644
(2024).

[77] Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. 2023. Privatelora
for efficient privacy preserving llm. arXiv preprint arXiv:2311.14030 (2023).

[78] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. 2019. Accelergy: An
architecture-level energy estimation methodology for accelerator designs. In
2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[79] John Wuu, Rahul Agarwal, Michael Ciraula, Carl Dietz, Brett Johnson, Dave
Johnson, Russell Schreiber, Raja Swaminathan, Will Walker, and Samuel Naffziger.
2022. 3D V-Cache: the Implementation of a Hybrid-Bonded 64MB Stacked Cache
for a 7nm x86-64 CPU. In 2022 IEEE International Solid-State Circuits Conference
(ISSCC), Vol. 65. IEEE, 428–429.

[80] Tongxin Xie, Zhenhua Zhu, Bing Li, Yukai He, Cong Li, Guangyu Sun, Huazhong
Yang, Yuan Xie, and Yu Wang. 2025. UniNDP: A Unified Compilation and Simu-
lation Tool for Near DRAM Processing Architectures. In 2025 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 624–640.

[81] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu,
and Yuan Xie. 2021. SpaceA: Sparse Matrix Vector Multiplication on Processing-
in-Memory Accelerator. In IEEE International Symposium on High-Performance
Computer Architecture, HPCA 2021, Seoul, South Korea, February 27 - March 3,
2021. IEEE, 570–583. https://doi.org/10.1109/HPCA51647.2021.00055

[82] Haoyan Yang, Zhitao Li, Yong Zhang, Jianzong Wang, Ning Cheng, Ming Li, and
Jing Xiao. 2024. PFID: Privacy First Inference Delegation Framework for LLMs.
arXiv preprint arXiv:2406.12238 (2024).

[83] Shouyi Yin, Shibin Tang, Xinhan Lin, Peng Ouyang, Fengbin Tu, Leibo Liu,
Jishen Zhao, Cong Xu, Shuangchen Li, Yuan Xie, and Shaojun Wei. 2019. Parana:
A Parallel Neural Architecture Considering Thermal Problem of 3D Stacked
Memory. IEEE Trans. Parallel Distributed Syst. 30, 1 (2019), 146–160. https:
//doi.org/10.1109/TPDS.2018.2858230

[84] Zhiheng Yue, Huizheng Wang, Jiahao Fang, Jinyi Deng, Guangyang Lu, Fengbin
Tu, Ruiqi Guo, Yuxuan Li, Yubin Qin, YangWang, Chao Li, Huiming Han, Shaojun
Wei, Yang Hu, and Shouyi Yin. 2024. Exploiting Similarity Opportunities of
Emerging Vision AI Models on Hybrid Bonding Architecture. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA). IEEE,
396–409.

[85] Sungmin Yun, Kwanhee Kyung, Juhwan Cho, Jaewan Choi, Jongmin Kim,
Byeongho Kim, Sukhan Lee, Kyomin Sohn, and Jung Ho Ahn. 2024. Duplex: A
Device for Large Language Models with Mixture of Experts, Grouped Query
Attention, and Continuous Batching. arXiv preprint arXiv:2409.01141 (2024).

[86] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali
Sridhar, Tianlu Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-trained trans-
former language models. arXiv preprint arXiv:2205.01068 (2022).

[87] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
and Ion Stoica. 2020. Ansor: Generating {High-Performance} tensor programs
for deep learning. In 14th USENIX symposium on operating systems design and
implementation (OSDI 20). 863–879.

[88] Size Zheng, Renze Chen, AnjiangWei, Yicheng Jin, QinHan, Liqiang Lu, Bingyang
Wu, Xiuhong Li, Shengen Yan, and Yun Liang. 2022. AMOS: enabling automatic
mapping for tensor computations on spatial accelerators with hardware abstrac-
tion. In Proceedings of the 49th Annual International Symposium on Computer
Architecture. 874–887.

[89] Size Zheng, Siyuan Chen, Siyuan Gao, Liancheng Jia, Guangyu Sun, Runsheng
Wang, and Yun Liang. 2023. Tileflow: A framework for modeling fusion dataflow
via tree-based analysis. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture. 1271–1288.

[90] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu,
Xin Jin, and Hao Zhang. 2024. Distserve: Disaggregating prefill and decoding for
goodput-optimized large language model serving. arXiv preprint arXiv:2401.09670
(2024).

[91] Zhe Zhou, Cong Li, Xuechao Wei, Xiaoyang Wang, and Guangyu Sun. 2022.
GNNear: Accelerating full-batch training of graph neural networks with near-
memory processing. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques. 54–68.

[92] Zhe Zhou, Cong Li, Fan Yang, and Guangyu Sun. 2023. Dimm-link: Enabling
efficient inter-dimm communication for near-memory processing. In 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 302–316.

https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.1109/HPCA51647.2021.00055
https://doi.org/10.1109/TPDS.2018.2858230
https://doi.org/10.1109/TPDS.2018.2858230

	Abstract
	1 Introduction
	2 Background
	2.1 Transformer-based LLMs
	2.2 LLM Inference on Edge
	2.3 Heterogeneous NMP Accelerators for LLMs

	3 Motivation
	3.1 Limitations of Existing In-Die NMP Designs
	3.2 Hybrid Bonding to the Rescue?
	3.3 Limitations of Existing Dataflow Designs

	4 H2-LLM's Architecture
	4.1 Architecture Overview
	4.2 NMP Operator Execution Flow
	4.3 H2-LLM's Command Interface
	4.4 H2-LLM's Architecture Design Space

	5 H2-LLM's Data-Centric Dataflow Abstraction
	5.1 Operator-Channel Binding
	5.2 Operator Execution Mapping
	5.3 Transformer Layer Execution Flow
	5.4 H2-LLM's Dataflow Design Space

	6 H2-LLM's DSE Framework
	6.1 Framework Overview
	6.2 Exploration Engine's Workflow
	6.3 Model Complication Flow

	7 Evaluation
	7.1 Evaluation Methodology
	7.2 Comparison with Baselines
	7.3 Performance Analysis
	7.4 DSE Analysis

	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Methodology

	References

