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Abstract
Low-batch large language model (LLM) inference has been exten-
sively applied to edge-side generative tasks, such as personal chat
helper, virtual assistant, reception bot, private edge server, etc. To
efficiently handle both prefill and decoding stages in LLM inference,
near-memory processing (NMP) enabled heterogeneous computa-
tion paradigm has been proposed. However, existing NMP designs
typically embed processing engines into DRAM dies, resulting in
limited computation capacity, which in turn restricts their ability
to accelerate edge-side low-batch LLM inference.

To tackle this problem, we propose H2-LLM, a Hybrid-bonding-
based Heterogeneous accelerator for edge-side low-batch LLM in-
ference. To balance the trade-off between computation capacity
and bandwidth intrinsic to hybrid-bonding technology, we propose
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H2-LLM’s architecture and extract its architecture design space.
We further propose a data-centric dataflow abstraction to fully ex-
ploit the heterogeneous architecture’s acceleration opportunities
in low-batch LLM inference. Based on the whole design space, we
propose a design space exploration (DSE) framework to automati-
cally find out the optimal design. Compared with existing in-die
NMP-based heterogeneous accelerators, H2-LLM achieves 2.72×
geomean speedup and 1.48× geomean better energy efficiency. H2-
LLM’s data-centric dataflow exploration framework is open-sourced
at https://github.com/leesou/H2-LLM-ISCA-2025.

CCS Concepts
• Computer systems organization → Heterogeneous (hybrid)
systems.

Keywords
Large Language Model, Hybrid Bonding, Near-Memory Processing
ACM Reference Format:
Cong Li, Yihan Yin, Xintong Wu, Jingchen Zhu, Zhutianya Gao, Dimin
Niu, Qiang Wu, Xin Si, Yuan Xie, Chen Zhang, and Guangyu Sun. 2025.
H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-
Bonding-based Low-Batch LLM Inference. In Proceedings of the 52nd Annual
International Symposium on Computer Architecture (ISCA ’25), June 21–25,
2025, Tokyo, Japan. ACM, New York, NY, USA, 17 pages. https://doi.org/10.
1145/3695053.3731008

https://orcid.org/0000-0001-7760-3254
https://orcid.org/0009-0002-3848-3426
https://orcid.org/0009-0002-9971-2413
https://orcid.org/0000-0002-4321-7694
https://orcid.org/0009-0008-1013-5781
https://orcid.org/0000-0001-8440-3875
https://orcid.org/0009-0009-8981-2876
https://orcid.org/0000-0002-4993-0087
https://orcid.org/0000-0003-2093-1788
https://orcid.org/0000-0003-2762-2726
https://orcid.org/0000-0002-7315-6589
https://doi.org/10.1145/3695053.3731008
https://github.com/leesou/H2-LLM-ISCA-2025
https://doi.org/10.1145/3695053.3731008
https://doi.org/10.1145/3695053.3731008


ISCA ’25, June 21–25, 2025, Tokyo, Japan Cong Li et al.

1 Introduction
Generative large language models (LLMs) (e.g., GPT family [6, 58,
65], LLaMA family [14, 71, 72], etc.) have demonstrated outstanding
ability in a wide range of applications such as chatbot [19, 57], code
completion [9, 17, 54], and many other generative tasks [11, 66,
86, 86]. Apart from being deployed as a cloud service for millions
of users [3, 17, 19, 57], LLMs are gradually sinking to edge-side
platforms to meet user’s requirements for function availability, per-
sonalization, and data privacy [15, 23, 29, 30, 42, 49, 53, 63, 75], as
exemplified in Fig. 1. Different from the large-batch characteristic
in cloud-level applications [24, 60], these edge-side LLM services
feature a low-batch property (one to a few tens) due to their per-
sonalized nature and require low-latency processing to maintain a
smooth user experience.

Performing efficient LLM inference requires the hardware to
effectively handle its two stages: prefill and decoding. In the prefill
stage, the LLM processes the input token sequence (i.e., the prompt)
in a single step, leveraging high computational parallelism among
hundreds to thousands of tokens. In contrast, the decoding stage
processes one token of each request per iteration, behavingmemory-
intensive nature due to the low data reuse. To meet such disparate
demands, Near-Memory Processing (NMP) based heterogeneous
architectures have been widely proposed [24, 37, 39, 41, 47, 60, 85].
These architectures combine conventional centralized processors
(e.g., GPUs) with processing engines embedded inmemory channels
to accelerate both computation-intensive and memory-intensive
operators. In this way, they have achieved notable performance
improvements in cloud-level LLM inference scenarios.

However, existing NMP designs typically place NMP process-
ing engines into DRAM dies (defined as "in-die NMP" in this pa-
per) [37, 39, 41, 43, 44], providing extremely low computation ca-
pacity due to DRAM technology’s scarce logic resources [13]. This
prevents them from fully accelerating low-batch LLM inference:
First, the speedup brought by in-die NMP diminishes as the batch
size increases. At the same time, the limited batch size fails to alle-
viate the memory-bound issue to the centralized processor in the
decoding stage. Consequently, both the centralized processor and
the NMP processing engines can be sub-optimal in low-batch infer-
ence. Second, with the increased arithmetic intensity introduced by
multi-head attention’s variants [1, 67], in-die NMP falls short of sus-
taining its superior performance to attention operators. Although
a recent work [85] has attempted to enhance the NMP computa-
tion capacity, the high power consumption of its underlying HBM
memory makes it unsuitable for edge-side scenarios.

The recent emerging hybrid bonding (HB) technology [7, 16, 33,
55, 79, 84] seems to be a promising alternative to existing methods.
It not only offers considerable bandwidth with lower power con-
sumption than HBM [16, 55], but also enables NMP computation
capacity enhancement by customizing processing engines on the
incorporated logic die. However, there are still several challenges
in designing a hybrid-bonding-based heterogeneous accelerator
for low-batch LLM inference. For architecture design, hybrid bond-
ing’s high bandwidth comes at the cost of controllers occupying a
significant portion of the logic die’s area, resulting in a trade-off
between computation capacity and bandwidth. As to dataflow de-
sign, fixed operator mappings [24, 37, 39, 60] cannot fully utilize
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Figure 1: Edge-Side LLM Services.

the acceleration opportunities of the heterogeneous architecture in
low-batch LLM inference, while the prefill-unaware nature in exist-
ing dataflow exploration [47] may hurt the end-to-end performance,
despite its capability in decoding stage acceleration.

To tackle these challenges, we proposeH2-LLM, a hybrid-bonding-
based heterogeneous accelerator for edge-side low-batch LLM infer-
ence. H2-LLM is the first work aiming to comprehensively explore
the computation-bandwidth trade-off intrinsic to hybrid bonding
for LLM inference. To this end, we propose H2-LLM’s heteroge-
neous hybrid bonding architecture and extract its architecture de-
sign space. To fully utilize the acceleration potential of H2-LLM’s
architecture, we propose a data-centric dataflow abstraction and
extract the dataflow design space. Based on the design space, H2-
LLM’s DSE framework can automatically find out the optimal de-
sign. To summarize, we have made the following contributions:
• We analyze the deficiencies of in-die NMP architectures and
pose the chances and challenges of hybrid bonding for low-
batch LLM inference on edge.

• We propose H2-LLM’s heterogeneous hybrid bonding architec-
ture and extract its architecture design space to explore the
computation-bandwidth trade-off inherent in hybrid bonding.

• We propose H2-LLM’s data-centric dataflow abstraction to fully
exploit the capability of H2-LLM’s heterogeneous architecture.

• We summarize several takeaways for future heterogeneous hy-
brid bonding architecture design by conducting case studies in
H2-LLM’s design space.

Extensive experiments demonstrate that H2-LLM outperforms ex-
isting in-die NMP-based heterogeneous accelerators by 2.72× (ge-
omean) speed up and 1.48× (geomean) better energy efficiency.

2 Background
2.1 Transformer-based LLMs
As illustrated in Fig. 2-(a), mainstream LLMs are built on top of
transformer decoder layers [73]. The token embedding at the begin-
ning converts input tokens to embeddings which decoder layers can
process, while the language model (LM) head at the end translates
output embeddings to new tokens. A conventional transformer
layer contains a multi-head attention (MHA) block and a feed-
forward network (FFN) block, both of which are accompanied by
normalization and residual layers. In the MHA block, the input
embeddings are first projected to query, key, and value vectors by
three fully-connected (FC) layers (Q, K, V). Then, these vectors are
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Figure 2: LLM Architecture and Transformer Variants.

split into 𝐻 heads. In each head, every query vector is multiplied
with the key vectors before its position (QK). After being processed
by the softmax function, the attention scores are applied to corre-
sponding value vectors (SV). The outputs are then concatenated
and projected by the output projection FC layer (O). The FFN block
followed by the MHA block contains a bottom FC layer (F1) and
a top FC layer (F2). The output of F1 needs to be processed by an
activation function (e.g., GeLU [22]) before being sent to F2.

Apart from the conventional transformer layer introduced above,
there are several variants adjusting the layer structure: Multi-query
attention (MQA) [2, 11, 18, 67] and group-query attention (GQA) [1,
4, 14, 72] are proposed to alleviate the memory-intensive issue in
MHA [24, 60]. As depicted in Fig. 2-(b), MQA groups all key heads to
one key-value head pair, while GQA generalizes MQA to keep more
than one key-value head pair (four in this example). In addition to
the computation pattern of attention operator, transformer layer’s
operator organization can also be adjusted. As shown in Fig. 2-(c),
gated linear units (GLUs) [11, 14, 68, 72] introduce one more bottom
FC (F3) to the FFN block. In the parallel transformer layer [11, 34, 74]
illustrated in Fig. 2-(d), the attention block and the FFN block share
the same input and can be processed concurrently.

2.2 LLM Inference on Edge
Recently, LLMs are anticipated to be deployed on edge-side plat-
forms such as smart home equipment, household servers, and intel-
ligent cockpit, etc., owing to their powerful capabilities in manag-
ing and executing a wide range of complex tasks. As exemplified
in Fig. 1, the personal chat helper offers instant replies to user’s
questions [42]. The virtual assistants in smart home equipment or
intelligent cockpits [29, 30, 53] receives the user’s instructions and
interacts with multiple application interfaces or firmwares. The re-
ception bot [23, 63, 75] in hospitality environments obtains the cus-
tomers’ queries and provide adequate guidance. Besides, due to the
data privacy issue, LLMs can also be deployed on the private edge
server for the internal cooperation in creative teams[76, 77, 82].

LLM inference on edge exhibits two major characteristics: First,
due to the personalized nature and the demand for low-latency in-
teraction, edge-side LLM services typically handles a small number
of requests at a time. For instance, the personalized chatbot (e.g.,

Table 1: Workload Analysis for Representative Use Cases

Use Case Dataset Avg. Prompt Len. Avg. Decoding Len.
Code Completion HumanEval (HE) [9] 157 67

Chatbot ShareGPT (SG) [70] 783 209
Context Understanding LongBench (LB) [5] 1886 97
Question Answering LooGLE (LG) [48] 1971 17

Jetson’s text generation webui [42]) communicates with single user.
The LLM-embodied management system interacts with several in-
terfaces (e.g., 6 in AIOS [53]). The reception bot or private edge
server can provide LLM service to a few tens of users.

Second, personalized LLM inference applications exhibit varied
workload distributions (i.e., prompt and decoding length) across
different use cases. To demonstrate such diversity, we analyse four
typical LLM applications using corresponding open-source datasets:
code completion (HumanEval [9]), chatbot (ShareGPT [70]), context
understanding (LongBench [5]), question answering (LooGLE [48]).
The context length is configured as 2048 considering edge-side
platform’s confined resource provision. As listed in Table 1, for
code completion and chatbot applications, the prompt and decoding
length presents comparable orders of magnitude, thus behaving
"decoding heavy" nature according to previous profiling results [26,
60]. On the other hand, the prompt length in context understanding
and question answering is one or two magnitudes longer than the
decoding length, leading to a higher share of prefill latency ("prefill
heavy") [26, 60]. Therefore, it is crucial to efficiently handle both
prefill and decoding stages to enhance user experience.

2.3 Heterogeneous NMP Accelerators for LLMs
Near-Memory Processing has been a promising solution to acceler-
ate memory-intensive applications [12, 20, 31, 36, 45, 46, 50, 80, 81,
83, 91, 92]. To efficiently handle both prefill and decoding stages,
NMP-enabled heterogeneous accelerators have been proposed by
both the industry [37, 39, 41] and the academia [24, 47, 60]. In
these proposals, apart from the conventional centralized processor
(e.g., GPU, TPU, etc.), processing engines (PEs) are also placed into
memory channels. By driving these intra-channel PEs to execute
concurrently, they can utilize DRAM’s bank-level parallelism, thus
providing abundant bandwidth for memory-intensive operators in
LLM inference. For example, Samsung equips NMP-enabled HBM
cubes with AMD’s MI100 GPU [39]. By offloading all FC layers to
NMP PEs, it can accelerate single-batch GPT-J 6B inference against
GPU-only architectures. SK-Hynix offloadsMHA operators to NMP-
enabled GDDR6 memory system and leave FC operators to GPUs,
which can outperform GPU-only systems [37]. AttAcc and Ne-
uPIMs [24, 60] adopts dedicated NMP-enabled HBM cubes to accel-
erate MHA operators in large-batch cloud inference. SpecPIM [47]
explores the execution mapping between the centralized accelerator
and the NMP PEs for different LLMs used in speculative inference.
Apart from proposals targeting for cloud-level LLM inference, Sam-
sung and SK-Hynix also propose concept NMP products based on
LPDDR5 [39] and LPDDR5X [37] for on-device LLM inference.

3 Motivation
3.1 Limitations of Existing In-Die NMP Designs
Existing NMP-enabled heterogeneous LLM accelerators typically
place NMP PEs together with the DRAM arrays in the samememory
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Table 2: Commodity In-die NMP Proposals for LLMs

Product NMP Bandwidth NMP Computation Capacity NMP Comp.-BW. Ratio

HBM-PIM [39, 43] 1-1.229 TB/s per cube
( 4× external bandwidth)

1.2 TFLOPS per cube
(9.6 GFLOPS per PE) ~1 FLOP/Byte

GDDR6-AiM [37, 41, 44] 512 GB/s per channel
(16× external bandwidth)

512 GFLOPS per channel
(32 GFLOPS per PE) 1 FLOP/Byte

LPDDR5-PIM [39] 102.4 GB/s per channel
(8× external bandwidth)

102.4 GFLOPS per channel
(6.4 GFLOPS per PE) 1 FLOP/Byte

LPDDR5X-AiM [37] 153.6 GB/s per channel
(8× external bandwidth)

307.2 GOPS per channel
(19.2 GOPS per PE) 2 OP/Byte

die (named as in-die NMP in this paper). As summarized in Table 2,
although existing commodity designs can achieve 4-16× higher
bandwidth than the external memory interface, their computation-
bandwidth ratio is only 1-2. Such a low computation capacity pre-
vents them from fully accelerating low-batch LLM inference: On
the one hand, although in-die NMP architectures can bring substan-
tial speedup to single-batch FC operators, their low computation
capacity severely constrains the inference performance with the
batch size increasing. Considering low-batch FC operators in the
decoding stage are still memory-bound to the centralized processor,
existing heterogeneous in-die NMP designs can only provide low
effective computation capacity to these operators. On the other
hand, although MHA operators can achieve substantial speedup on
in-die NMP architectures [24, 37, 60], the arithmetic intensity of
attention operators also increases with the adoption of GQA and
MQA, thus facing similar issue to low-batch FC operators.

To elucidate such limitation, we adopt operators in LLaMA3
8B [14] to conduct roofline analysis on 8 Samsung LPDDR5-PIM [39]
channels. For FC operators, we adjust the batch size (BS) from 1 to
16. For attention operators, the key-value (KV) head number is var-
ied from 1 to 32 (LLaMA3 8B’s query head number). As illustrated
in Fig. 3, although in-die NMP can achieve speedup when BS < 8
or KV head number > 4, the advantage gradually shrinks due to its
limited computation capacity. When BS ≥ 8 or KV head number
≤ 4, in-die NMP fails to provide performance improvement, even
though the centralized processor is still memory-bound. This leads
to the system’s low resource utilization. Therefore, it is necessary
to enhance NMP PE’s computation capacity to better alleviate the
memory-bound issue in low-batch LLM inference.

3.2 Hybrid Bonding to the Rescue?
The low computation capacity of in-die NMP stems from the DRAM
technology they employ: First, compared with CMOS in the same
technology node, DRAM technology’s transistor is 3× slower, and
its logic density is 10× lower [13]. Besides, DRAM chips typically
equip fewer metal layers [13, 84], leading to lower routing density
than logic dies. Second, the area budget available to in-die NMP PEs
is highly limited to avoid excessive density loss (e.g., 25% area sug-
gested by SK Hynix’s AiM [21, 44]), making it difficult to populate
more PEs. Duplex [85] tries to alleviate this issue by placing PEs
to HBM’s logic (buffer) dies and leveraging HBM’s TSV pitch size
reduction to provide sufficient bandwidth. However, HBM’s high
power consumption makes this HBM-coupled design unfeasible to
edge accelerators. Alternative measures are still required.

Recently, hybrid-bonding (HB) has emerged as a next-generation
integration technology [7, 16, 33, 55, 79, 84]. As illustrated in Fig. 4-
(a), it vertically stacks the DRAM die on top of the logic die and
connect them via Cu-Cu direct fusion bonding. In this way, HB
can deliver substantial bandwidth owing to its high I/O parallelism
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Figure 4: Hybrid Bonding Overview.

(110,000/mm2 with 3um pitch) [16, 55, 84]. Besides, the low parasitic
capacitance of HB boosts its power efficiency, making it feasible
to edge-side accelerator design compared with 2.5D integration
technology (e.g., HBM) [16, 33]. Moreover, compared with in-die
NMP, PEs can be customized on the logic die, thus enabling the
enhancement of computation capacity. We can adopt less advanced
logic technology to meet the cost and yield requirements of edge-
side accelerators. Previous works have applied hybrid-bonding-
based NMP (HB-NMP) architecture in AI applications such as neural
recommendation [55], vision model inference [84], etc.

Despite the promising characteristics exhibited in HB technology,
its integration overhead poses challenge to designing an accelera-
tor suitable for edge-side low batch LLM inference. HB technology
requires numerous memory controllers to drive its large number
of I/O pins, which encroach upon the available area for computa-
tion logic [55]. As depicted in Fig. 4-(b), according to our in-house
implementation using 40nm technology, the controller occupies
approximately 40% of the logic die area to manage 1024 HB I/O pins
for a single DRAM bank. While reducing the I/O pin number could
leave more area to computation logic, the resulting decrease in
bandwidth would limit the computation utilization, hindering the
performance improvement. Therefore, balancing the computation-
bandwidth trade-off intrinsic to HB technology is vital to fully
unveil its acceleration potential, which is still lack of discussion.

3.3 Limitations of Existing Dataflow Designs
Apart from the challenge in HB-NMP architecture design, existing
dataflow designs for NMP-enabled heterogeneous LLM accelera-
tors still remain limitations when it comes to edge-side low-batch
LLM inference. As summarized in Table 3, most of existing pro-
posals map a fixed subset of operators to NMP PEs [24, 37, 39, 60].
Fixed operator mapping can work well in large-batch cloud infer-
ence, where the arithmetic intensity of different operators exhibits
considerable variation. However, they cannot fully utilize NMP’s
acceleration capability in low-batch inference and fails to exploit
the parallelism provided by variants such as parallel transform-
ers. SpecPIM [47] conducts mapping exploration on NMP-enabled
heterogeneous accelerators in its single-model mapping. However,
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Table 3: Comparison of Different Dataflow Designs

Name Mapping Decision Operator Fission
GPU + HBM-PIM [39] Fixed (FC only) No

GPU + GDDR6-AiM [37] Fixed (Single-batch FC + Attention) No
NeuPIMs [24] Fixed (Attention only) No
AttAcc [60] Fixed (Attention + Fixed Fission) Fixed (FFN only)
SpecPIM [47] Compute-centric Exploration (Prefill-unaware) No
H2-LLM (ours) Data-centric Exploration (Prefill-aware) Flexible

its compute-centric mapping abstraction constrains operator place-
ment to either normal channels or NMP channels by first assigning
the computation engine (i.e., centralized processor or NMP PEs).
Since the two types of channels may co-exist due to the system
integration or resource utilization issue [32, 39, 47], this mapping
strategy restricts the channel number allocated to each operator,
thereby reducing the max external bandwidth available to the cen-
tralized processor. Given that the computation-bandwidth ratio
of edge-side processors can achieve 500-1000 [56], such a reduc-
tion in bandwidth may shift compute-bound prefill operators to
memory-bound, hurting the prefill performance. Considering the
prefill stage can take up non-negligible overhead after the decoding
stage is fully accelerated, especially in prefill-heavy scenarios, it is
necessary to design a prefill-aware mapping exploration scheme.

There are two methods for this problem: (1) Duplicate weights
for both prefill and decoding stages like prefill-decoding disaggre-
gation [27, 28, 61, 64, 90]. Although this solution works well for
cloud-level LLM serving, which usually adopts multiple model repli-
cas to meet the service-level objects of millions of users. Edge-side
accelerators equipped with limited resources can hardly afford the
huge memory footprint incurred by weight duplication. (2) Oper-
ator fission, which splits one operator to both normal and NMP
channels without duplicating the weights [60]. However, there still
lacks a solution to co-explore the operator mapping and operator
fission to achieve the optimal end-to-end performance.

To tackle these challenges, we propose H2-LLM, a heteroge-
neous accelerator based on HB-NMP for edge-side low-batch LLM
inference. In the following sections, we will introduce H2-LLM’s
architecture design, dataflow abstraction, and the DSE framework.

4 H2-LLM’s Architecture
4.1 Architecture Overview
As depicted in Fig. 5-(a), H2-LLM’s architecture comprises a cen-
tralized processor and a NMP-enabled memory system. The cen-
tralized processor is a xPU-like (GPU, TPU, etc.) high-performance
accelerator responsible for computation-intensive operators. It also
schedules the entire inference procedure according to the dataflow
described in Sec. 5. The NMP-enabled memory system contains

multiple memory channels, which can be either normal DRAM
channels with single memory die or hybrid-bonding-based NMP
(HB-NMP) channels with the memory die stacked on a logic die.

The memory die in each HB-NMP channel is shown in the upper
part of Fig. 5-(b). The DRAM banks in the memory die can be ac-
cessed under two modes: (1) Normal mode. When HB-NMP channel
does not conduct computation, each DRAM bank can be accessed
by the centralized processor through the external interface. (2) NMP
mode. When HB-NMP channel is conducting near-memory compu-
tation, all DRAM banks can be accessed concurrently by NMP PEs
through their distinct HB controllers. Only one mode is activated
at a time to avoid DRAM bank’s row buffer interference. For each
normal channel, its DRAM banks do not contain HB interfaces and
only serve centralized processor’s memory accesses through the
external memory interface like HB-NMP channel’s normal mode.

Fig. 5-(b)’s bottom part depicts HB-NMP channel’s logic die
architecture. The NMP controller receives commands from the
centralized processor via the external interface and drives NMP PEs
to conduct computation or memory access. Each NMP PE is paired
with one DRAM bank, which can be accessed via PE’s HB controller.
In this way, NMP PEs can execute in parallel to provide abundant
NMP bandwidth. A input global buffer is shared among all PEs to
avoid duplicating the input tensor to each DRAM bank. Since the
dedicated execution flow (discussed later) does not involve inter-PE
communication, we exclude NoC from NMP PEs to reserve more
area for computation logic.

HB-NMP’s PE design is illustrated in Fig. 5-(c). Each PE contains
multiple floating-point units (FPUs) to conduct MAC operations
for low-batch GEMM operators in the decoding stage. The weight
and output buffers are distributed across each PE, allowing them to
compute distinct output tiles. According to the instruction from the
NMP controller, the PE controller drives the FPUs for computation
or the HB controller for memory access.

4.2 NMP Operator Execution Flow
Similar to previous works [43, 47, 60], H2-LLM adopts offloading-
based execution model, which contains three steps: (1) The cen-
tralized processor prepares inputs and scatter them to HB-NMP
channels. (2) After input preparation, PEs conduct computation
concurrently. (3) After all PEs finishing computation, the central-
ized processor reads and merges their (partial) results and prepares
for the next operator. Under this execution model, the operator
execution flow in HB-NMP channels is as follows:
Inter-Channel Operator Partition: Given the LLM operator
and the HB-NMP channels, we need to first split the workload
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Figure 6: H2-LLM’s Intra-Channel Execution Flow.

among these channels. For GEMM operators, assume the shape
of input and weight tensors are (𝑀,𝐾) and (𝐾, 𝑁 ), respectively.
Considering the weight tensors take up huge memory footprints,
we do not split 𝑀 to avoid their duplication. Splitting 𝐾 and 𝑁
brings the trade-off between collecting & merging partial-results
and duplicating inputs. Although the total computation amount
is almost the same under different tiling strategies, such a trade-
off leads to different data transfer sizes in Step (1) and (3), thus
affecting the operator’s end-to-end performance. We adopt an an-
alytical model to find out the optimal tiling factors. Assume the
element size, channel number, the effective memory load/store
bandwidth, and the tiling factors of dim 𝐾 and 𝑁 are 𝑠 , 𝐶 , 𝐵𝑙 , 𝐵𝑠 ,
𝑇𝐾 , 𝑇𝑁 , respectively. The total transfer overhead can be estimated

as:
(𝑠×𝑀× 𝐾

𝑇𝐾
)×𝐶

𝐵𝑠×𝐶 +
(𝑠×𝑀× 𝑁

𝑇𝑁
)×𝐶

𝐵𝑙×𝐶 = 𝑠×𝑀×𝐾
𝑇𝐾 ×𝐵𝑠 + 𝑠×𝑀×𝑁

𝑇𝑁 ×𝐵𝑙 . Therefore,
we can solve the following optimization problem to find out the
optimal tiling factors:

min
𝑇𝐾 ,𝑇𝑁

𝑠 ×𝑀 × ( 𝐾

𝑇𝐾 × 𝐵𝑠
+ 𝑁

𝑇𝑁 × 𝐵𝑙
), s.t. 𝑇𝐾 ×𝑇𝑁 = 𝐶 (1)

Considering 𝐵𝑙 , 𝐵𝑠 can be regarded as constants given the ten-
sor transfer pattern, this problem has an analytical solution 𝑇𝐾 =√︃
𝐶 × 𝐾×𝐵𝑙

𝑁×𝐵𝑠 . Therefore, given the NMP channel number, we can
get the optimal tiling factors statically for each operator.

If there are multiple batched GEMMs in this operator (i.e., atten-
tion operator), these GEMMs are split into sub-batches and scattered
evenly across HB-NMP channels. By decreasing the number of HB-
NMP channel assigned to each GEMM, we can reduce the data
volume of duplicated inputs and output partial sums, reducing the
data transfer overhead. Tiling factors can be solved similar to Eq. 1.
Intra-Channel Execution: After workload scattering, all HB-
NMP channels conduct computation in parallel. As illustrated in
Fig. 6, if one HB-NMP channel is allocated to single GEMM operator
with the shape of (𝑀𝑐ℎ, 𝐾𝑐ℎ)× (𝐾𝑐ℎ, 𝑁𝑐ℎ), the input tensor is evenly
scattered across DRAM banks. The weight tensor and output tensor
are evenly split along the output feature dim 𝑁𝑐ℎ to each bank.
Accordingly, each PE produces distinct results𝑂𝑖 by consuming𝑊𝑖
without interference. To simplify the buffer management and avoid
DRAM bank’s row buffer conflict when transferring different ten-
sors, we adopt output-stationary execution flow with the following
procedure: The input tile is first loaded to the global buffer from
DRAM banks through the HB I/O (❶). Next, each PE loads weight
tiles and drives the FPUs to perform MAC operation (❷-❸). Once
each PE’s output tile has been fully accumulated by repeating ❶-❸,
it is written back to the local DRAM bank (❹). Subsequently, the
HB-NMP channel returns to ❶ and compute new output tiles. In

this way, each tensor is accessed consecutively, thus avoiding row
buffer interference among the access of different tensors. For each
HB-NMP channel, given the workload shape and each PE’s archi-
tecture parameters (computation capacity, bandwidth, buffer size,
etc.), the optimal tile sizes can be found out statically via existing
performance models [40, 51, 59]. As to batched GEMM operators,
different GEMMs and their corresponding KV cache/output tensors
are first allocated to separate PEs. Each GEMM follows the same
execution flow as discussed above. The input global buffer sends
data to each PE on demand according to the GEMM allocation.

4.3 H2-LLM’s Command Interface
To drive the execution flow described above, we introduce four
types of commands to control HB-NMP channels:
Mode Change: To avoid the row buffer interference issue, this
command is inserted at the beginning and the end of HB-NMP
PE’s execution, serving as a memory barrier to isolate centralized
processor’s normal memory accesses and other NMP commands.
For Mode Change command at the beginning of execution, it also
carries the tile size information, which will be used by the NMP
controller to generate offsets of each SRAM buffer.
Near-Memory Computation: This command is used to drive
HB-NMP PEs to conduct computation. Since all PEs have identical
execution process, we can issue one command to control all PEs
in one HB-NMP channel. Besides, similar to previous work [24],
this command controls HB-NMP channels in a coarse-grained man-
ner. Each command corresponds to one weight tile’s computation,
carrying the initial offsets of each buffer’s tensor tile. The NMP con-
troller is responsible for unpacking it into fine-grained instructions
to control PEs conducting computation.

FPUs in each HB-NMP PE only conduct MAC operation for
the following reasons: First, softmax and normalization operators
need to collect outputs before computation, leading to low paral-
lelism and bandwidth requirements [60]. Second, similar to previ-
ous work [47], element-wise operators can be efficiently fused with
NMP operator’s result merging stage (i.e., Step (3) in H2-LLM’s
execution model). Therefore, we leave non-GEMM operators to the
centralized processor and reserve more area to GEMM operators.
Input Global Buffer Data Movement: This command is respon-
sible for transferring input tiles from DRAM banks to the input
global buffer. By providing the data volume and initial addresses,
the NMP controller generates a series of DRAM commands to drive
HB I/Os to conduct data movement.
Local Buffer Data Movement: This command is responsible for
the data transfer between each PE’s weight/output buffer and local
DRAM bank. Similar to Near-Memory Computation command, this
command is a coarse-grained all-bank command. By coordinating
the issue order of fine-grained instructions from the NMP controller,
PE computation and weight buffer loading can be overlapped.

4.4 H2-LLM’s Architecture Design Space
H2-LLM’s architecture design space contains three dimensions:
HB-NMP Resource Distribution: Considering previous propos-
als may place both NMP and normal channels to exploit the paral-
lelism in the operator graph [47] or to fully utilize all computation
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Figure 7: Operator-Channel Binding in H2-LLM’s Data-Centric Dataflow Abstraction.

resources [32], we introduce HB-NMP channel number into the de-
sign space. By adjusting this parameter, we can explore the optimal
NMP resource distribution.
PE Architecture: To explore the trade-off between bandwidth and
computation capacity as discussed in Sec. 3.2, we first introduce
HB I/O bandwidth to the design space. For computation capacity,
we adjust each PE’s total MAC number and operation frequency.
When the computation capacity requirement can be satisfied by
multiple frequencies, we can choose the low-frequency design to
reduce the energy consumption.
SRAM Buffer Size: Considering the tensor volume varies among
operators/models/scenarios (e.g., batch size, context length), the
buffer size requirement changes accordingly. Therefore, we intro-
duce input global/weight/output buffer sizes to the design space.

5 H2-LLM’s Data-Centric Dataflow Abstraction
H2-LLM’s data-centric dataflow abstraction consists of two stages:
operator-channel binding and operator execution mapping. In this
section, we will first elaborate on the details of these stages. Then,
based on the whole dataflow abstraction, we will introduce H2-
LLM’s end-to-end execution flow and summarize the dataflow de-
sign space. Note that this data-centric dataflow abstraction is not
constrained to H2-LLM’s architecture design. It can be generalized
to all NMP-based heterogeneous LLM accelerators.

5.1 Operator-Channel Binding
Themain limitation of the compute-centric dataflow abstraction [47]
is that the operator placement is constrained by computation en-
gine allocation (i.e., centralized processor or NMP PEs). Although
it can choose the optimal engine and explore operator-graph-level
parallelism, the decreased external memory bandwidth may cause
centralized processor operators’ performance degradation, thus
hurting the end-to-end performance. Besides, constraining the op-
erator placement to only one type of channel (i.e., normal or NMP)
prevents it from exploring the capability of operator fission on
heterogeneous NMP accelerators [60].

To tackle these problems, instead of directly assigning the com-
putation engine, our data-centric dataflow abstraction first binds
memory channels to each operator. The operator-channel binding
procedure is composed of three steps:
Step 1: Memory Access Group Partition: For each transformer
layer, the first step is to split its operator graph into severalMemory

Access Groups (MAGs) so that we can explore the inter-operator
parallelism. Assume the transformer layer’s operator set is 𝑉 . The
MAG partition procedure can be represented as:

𝐴0 ⪯ 𝐴1 ⪯ ... ⪯ 𝐴𝑀−1, where

𝐴0 ∪𝐴1∪... ∪𝐴𝑀−1 = 𝑉 , and 𝐴𝑖 ∩𝐴𝑖′ = ∅ (∀𝑖 ≠ 𝑖
′
)

(2)

In Eq. (2), each 𝐴𝑖 (0 ≤ 𝑖 ≤ 𝑀 − 1) represents a MAG. The notation
𝐴𝑖 ⪯ 𝐴 𝑗 means that all operators in 𝐴𝑖 do not depend on operators
in 𝐴 𝑗 . Besides, each operator in 𝑉 is exactly assigned to one MAG.
In eachMAG, operators sharing the same input tensor are randomly
combined together to explore different operator fission strategies.
Each MAG takes up all normal & NMP channels, which will be
transposed to more detailed channel allocation in subsequent steps.
Step 2: Coarse-grain binding: Considering each MAG may still
have independent operator subsets (e.g., {F1, F2} and {SV, O} in 𝐴1
of Fig. 7), the next step of operator-channel binding is to assign
separate memory channels to these subsets, so that we can preserve
the parallel execution capability inherent in each MAG.

Formally, for eachMAG 𝐴𝑖 , we extract its weakly connected com-
ponents: 𝐴𝑖 = {𝑃 (𝑖,0) , ..., 𝑃 (𝑖,𝑁−1) }. Each weakly connected compo-
nent 𝑃 (𝑖, 𝑗 ) is named as Memory Partition Group (MPG), meaning
that it will be assigned to a separate subset of memory channels.
The memory channel set is represented as𝐶 = {𝑃𝐶0, ...𝑃𝐶𝑃−1, 𝑁𝐶},
where each 𝑃𝐶𝑝 represents one NMP channel, while 𝑁𝐶 is the col-
lection of all normal channels. We abstract all normal channels
into one "virtual channel" considering all workloads assigned to
normal channels are executed by the centralized processor. Given
these representations, the coarse-grain binding in each MAG can
be described as the following Group-Channel Mapping (GCMap):

𝐺𝐶𝑀𝑎𝑝𝐴𝑖 : {𝑃 (𝑖,0) , ..., 𝑃 (𝑖,𝑁−1) } → P(𝐶) − ∅ (3)

In Eq. (3), P(𝐶) indicates the power set of𝐶 . A valid GCMap should
satisfy the following constraints: (1) Channel exclusive constraint:
For any two MPGs, their channel sets should have no intersection:

𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗 ) ) ∩𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗 ′ ) ) = ∅, (∀𝑗 ≠ 𝑗
′
) (4)

(2) Channel utilziation constraint: All channels should be occupied
by the MPGs in each MAG:

𝑁−1⋃
𝑗=0

𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗 ) ) = 𝐶 (5)
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Step 3: Fine-grain binding: The last step of operator-channel
binding is to determine detailed channel allocation. Considering op-
erators exhibit sequential dependency in each MPG 𝑃 (𝑖, 𝑗 ) , we first
stratify it into operator tiers accordingly: 𝑃 (𝑖, 𝑗 ) = {𝑇 (𝑖, 𝑗 )

0 , ...,𝑇
(𝑖, 𝑗 )
𝑋−1 }.

Each operator tier𝑇 (𝑖, 𝑗 )
𝑘

occupies all channels assigned to thisMPG
(i.e.,𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗 ) )) and its operators are mutually independent.
Therefore, the channel binding of operators in 𝑇 (𝑖, 𝑗 )

𝑘
can be de-

scribed by the following Operator-Channel Mapping (OCMap):

𝑂𝐶𝑀𝑎𝑝
𝑇

(𝑖,𝑗 )
𝑘

: 𝑇 (𝑖, 𝑗 )
𝑘

→ P(𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗 ) )) − ∅ (6)

P(𝐺𝐶𝑀𝑎𝑝𝐴𝑖 (𝑃 (𝑖, 𝑗 ) )) denotes the power set of 𝑃 (𝑖, 𝑗 ) ’s channel set.
Similar toGCMap, a validOCMap also follows the channel exclusive
constraint and channel utilization constraint as discussed above.
Binding Example: In Fig. 7, we adopt parallel transformer [11]’s
operator graph to exemplify the whole operator-channel binding
procedure. Assume the accelerator contains 6 NMP channels and 2
normal channels. The parallel transformer layer is first split into two
MAGs (𝐴0, 𝐴1) as depicted in Fig. 7-(b), with no operator combined
together. Both of them take up all 8 channels. Then, 𝐴0 and 𝐴1 are
partitioned into three and two MPGs according to the dependency.
Each MPG is assigned to a separate channel subset. During fine-
grain binding, MPGs 𝑃 (0,0) , 𝑃 (1,0) , 𝑃 (1,1) are stratified into two tiers
according to the operator dependency. For operator tiers with single
operator, all channels are bound to the sole operator. Otherwise,
channels are further partitioned. For 𝑇 (0,0)

0 in this example, Q is
assigned to all NMP channels, while K takes up all normal channels.

5.2 Operator Execution Mapping
Given the operator-channel binding, we then need to decide the
computation engine responsible for each operator. Operators in the
prefill stage are assigned to the centralized processor considering
each prompt has hundreds to thousands of tokens. For the decoding
stage, if the operator is assigned exclusively to either normal or
NMP channels, it is executed by the centralized processor or NMP
PEs accordingly. Otherwise, if the operator is bound to both normal
and NMP channels, operator fission will be applied: For GEMM
operator with the shape of (𝑀,𝐾) × (𝐾, 𝑁 ), we split the output
feature dim 𝑁 between the centralized processor and NMP PEs.
For attention operators, different GEMMs are assigned to each of
these two computation engines. In this way, there is no interference
between the centralized processor and NMP PEs after fission.

5.3 Transformer Layer Execution Flow
Based on the data-centric dataflow abstraction discussed above, the
execution flow of each transformer layer is as follows:

During the prefill stage, operators are executed sequentially on
the centralized processor, which is similar to conducting inference

on conventional centralized-processor-only architectures. During
the decoding stage, allMAGs are executed sequentially according to
the sorting order in the operator-channel binding. All MPGs in each
MAG are executed in parallel. To ensure such concurrency, MPGs
in each MAG are assigned with distinct vector processing units
(VPUs) of the centralized processor according to their max partial
sum volume. Operator tiers in each MPG are executed sequentially
according to the data dependency, while operators in each tier are
executed concurrently on separate computation engines.

Given the execution order, synchronization is conducted during
the decoding stage at four cases: (1) In each MAG, synchronize
among all MPGs’ last operators before the next MAG’s execution.
(2) In each MPG, synchronize among all operators in each tier be-
fore executing the next tier. (3) For operators conducting fission,
synchronize between the centralized processor part and the NMP
part. (4) In eachMAG, when VPU number is not enough for distinct
assignment, synchronize among operator tiers of allMPGs, with the
synchronization point determined by roofline-model-based latency
estimation. The controller in the centralized processor manages
synchronization according to operators’ execution flow and the
deterministic timings of centralized processor and NMP PEs’ oper-
ations (memory access, buffer access, computation, etc.).

Fig. 8 illustrates decoding stage’s execution flow of the example
in Fig. 7 in logical timestamp. We assume there are eight VPUs. The
two MAGs are executed according to the sorting order of 𝐴0 ⪯ 𝐴1.
In each 𝐴𝑖 , its MPGs are executed concurrently (represented in
identical logical duration) and their last operators ((QK, V, F3) and
(F2, O)) need to be synchronized (case (1)). The two tiers in 𝑃 (0,0) ,
𝑃 (1,0) , and 𝑃 (1,1) are executed sequentially according to the depen-
dency. In 𝑃 (0,0) , the two operators in its first tier (Q and K) executes
concurrently and requires synchronization (case (2)). For operators
conducting fission (QK, F1, F2), synchronization is conducted to
wait for full result computation (case (3)). Synchronization of QK
and F2 is combined with case (1) in the figure. Since all MPGs are
assigned with distinct VPUs as shown in the figure, the execution
flow does not involve synchronization case (4).

5.4 H2-LLM’s Dataflow Design Space
In the design space of H2-LLM’s data-centric dataflow abstraction,
we first explore the MAG partition 𝐴0 ⪯ 𝐴1 ⪯ ... ⪯ 𝐴𝑀−1. Since
MPG partition is determined given eachMAG’s operator graph, the
next explorable dimension is each MAG’s Group-Channel Mapping
𝐺𝐶𝑀𝑎𝑝𝐴𝑖 . After given all MPGs, the operator tiers can also be
inferred. Therefore, the third component in the design space is each
operator tier’s Operator-Channel Mapping 𝑂𝐶𝑀𝑎𝑝

𝑇
(𝑖,𝑗 )
𝑘

. Finally, for
operators allocated to both normal and NMP channels, we explore
the partition ratio between the two computation engines.

6 H2-LLM’s DSE Framework
6.1 Framework Overview
Fig. 9 provides an overview of H2-LLM’s DSE framework. It takes
three inputs: (1) Workload information, which contains the LLM’s
model definition along with scenario-specific information (e.g.,
expected batch size, prompt length, decoding length, etc.). (2) Archi-
tecture parameters, which contains a list of candidate architectures
described by the parameters within H2-LLM’s architecture design
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Figure 9: Overview of H2-LLM’s DSE Framework.

space as outlined in Sec. 4.4. If there is only one architecture can-
didate, the DSE framework can be used to identify the optimal
dataflow for the specified architecture. (3) DSE settings, such as
iteration rounds, optimization goal, etc.

After receiving these inputs, the DSE framework first adopts the
model parser to extract transformer layer’s operator graph and each
operator’s tensor shape. Then, these information together with the
architecture parameters and DSE settings are sent to the exploration
engine, which will search for the optimal architecture-dataflow co-
design under the given scenario. After finishing DSE, the optimal
design and its performance estimation will be reported. In the next
sub-section, we will detail the workflow of the exploration engine.

6.2 Exploration Engine’s Workflow
The exploration engine adopts genetic algorithm [25] to figure
out the optimal design. In the beginning, the population generator
initializes the first iteration’s population by randomly sampling
individuals from the design space (❶). For each individual, the ar-
chitecture design is first sampled, followed by the random selection
of dataflow abstraction. Then, this population is sent to the capac-
ity checker (❷). It will examine all channels’ capacity occupancy
status in each individual according to the operator-channel binding.
If there are channels meeting overflow issue, the individual will be
marked as illegal and discarded. After checking, all legal individuals
will be forwarded to the evaluator (❸), which adopts a simulator
(introduced in the next section) to evaluate the latency and energy
consumption of each design. The evaluated individuals are then
transferred to the selector (❹), which feeds the top-K individuals
back to the population generator (❺). The selection criteria is to
minimize latency by default, which can be adjusted in DSE settings.
Then, the population generator evolves new populations through
genetic operators on the top-K individuals (❻) and launches a new
iteration. After repeating❷-❻ for several iterations, the exploration
engine terminates and reports the optimal design.

In the population generator, we develop the following genetic
operators for population evolution:
OP1 (Re-sample): Randomly re-sample a new architecture along
with a new dataflow from the co-design space.
OP2 (Mutate): Keep the selected top-K individual’s architecture
design, and re-sample a new dataflow design.
OP3 (Mutate): Keep the selected top-K individual’s architecture de-
sign andMAG partition. Re-sample GCMaps, OCMaps, and operator
partition ratios.

Table 4: Model Configurations Used for Evaluation
Model Param. Layer (Hidden, Intermediate) (Q head, KV head)
OPT 6.7B 32 (4096, 16384) (32, 32)

LLaMA3 8B 32 (4096, 14336) (32, 8)
PaLM 8B 32 (4096, 16384) (16, 1)

OP4 (Mutate): Keep the selected top-K individual’s architecture
design, MAG partition, and GCMaps. Re-sample OCMaps together
with operator partition ratios.
OP5 (Crossover): Randomly select the architecture from two de-
signs sampled from the top-K individuals. Then, randomly choose
non-conflict MAGs alternately from the two designs. If there are re-
mained operators, randomly generate new MAGs for them. Finally,
randomly sample GCMaps, OCMaps, and operator partition ratios
according to the selected architecture and new MAGs.

The workflow discussed above provides a basic process to ex-
plore the optimal design for one input workload. When there are
multiple input workloads, we can sample all workloads’ dataflow
in each individual during DSE Step-❶ and Step-❻ in Fig. 9 and
use all workloads’ weighted average performance to evaluate each
individual during Step-❹ and Step-❺ to balance the DSE across
these workloads, similar to previous work’s practice [8].

6.3 Model Complication Flow
Given the architecture and the dataflow, the model is compiled
through the following steps: (1) Generate each operator’s execution
flow. For centralized processor operators, the execution flow can be
generated automatically by existing xPU compilers [10, 87, 88]. For
NMP operators, we first adopt Eq. 1 to decide workload scattering.
Then, we adopt NMP operator templates to find optimal buffer tile
sizes using performance models for tiled accelerators [40, 51, 59].
Currently these templates are manually designed according to the
execution flow in Sec. 4.2. How to automatically generate operator
templates will be our future work. For operators conducting opera-
tor fission, the two parts follow separate execution flow generation
process accordingly. The element-wise operators are fused with
their preceding GEMM operators following previous work’s prac-
tice [47] during execution flow generation. (2) After getting each
operator’s execution flow, we then arrange each transformer layer’s
execution flow and insert synchronization primitives as discussed
in Sec. 5.3. All transformer layers follow the same execution flow
since they have identical operator graph. (3) Finally, the end-to-end
execution flow is sent to the controller in the centralized processor
to schedule H2-LLM hardware for inference.

7 Evaluation
7.1 Evaluation Methodology
Benchmarks: As listed in Table 4, we choose OPT 6.7B [86], LLaM-
A3 8B [14], PaLM 8B [11] for evaluation, which have different
transformer architectures and adopt MHA/GQA/MQA, respectively.
All models are under FP16 data type. To evaluate the performance
under different scenarios in edge-side low-batch LLM inference, we
configure the batch size as 1/4/16 and set the token number as the
average number of the four datasets (HumanEval (HE), ShareGPT
(SG), LongBench (LB), LooGLE (LG)) listed in Table 1.



ISCA ’25, June 21–25, 2025, Tokyo, Japan Cong Li et al.

LLaMA3 8B

HE SG LB LG
Batch Size = 16

HE SG LB LG
Batch Size = 4

HE SG LB LG
Batch Size = 16

HE SG LB LG
Batch Size = 16

HE SG LB LG
Batch Size = 1

HE SG LB LG
Batch Size = 1

HE SG LB LG
Batch Size = 4

HE SG LB LG
Batch Size = 16

0
1
2
3
4
5

N
or

m
. S

pe
ed

up

HE SG LB LG
Batch Size = 1

En
er

gy
 E

ffi
ci

en
cy

0.0
0.5
1.0
1.5
2.0
2.5

HE SG LB LG
Batch Size = 4

HE SG LB LG
Batch Size = 4

CP ID-NMP ID-NMP+ H2-LLM

OPT 6.7B

HE SG LB LG
Batch Size = 1

PaLM 8B

HE SG LB LG
Batch Size = 1

HE SG LB LG
Batch Size = 4

HE SG LB LG
Batch Size = 16

HE SG LB LG
Batch Size = 1

HE SG LB LG
Batch Size = 4

HE SG LB LG
Batch Size = 16

0.
13 0.

65

0.
12 0.

64

0.
14 0.

66

0.
06

0.
21

0.
21

0.
20

0.
23 0.
39 0.
47

0.
490.

77

0.
43

0.
44 0.

66

0.
32 0.
42

0.
34 0.
43

0.
42 0.

68
0.

63

0.
12 0.

65

0.
12 0.

64

0.
13 0.

66

0.
21 0.

76

0.
21 0.

43

0.
21 0.

43

0.
24 0.

47

0.
42 0.

65

0.
50

0.
31 0.
50

0.
32 0.

56
0.

38 0.
84

0.
62

0.
12 0.

66

0.
11 0.

64

0.
13 0.

66

0.
20 0.

74

0.
21 0.

43

0.
21 0.

42

0.
24 0.

46

0.
39 0.

61

0.
50

0.
31 0.

51
0.

32 0.
59

0.
37 0.

88
0.

57

0.
07

0.
09

0.
09

0.
09

0.
12 0.
18

0.
17

0.
17 0.
26 0.
35

0.
33

0.
06

0.
06

0.
07

0.
07

0.
07

0.
09

0.
10 0.
14

0.
13 0.
22 0.
26

0.
27

0.
08

0.
08

0.
07

0.
06 0.
07

0.
07

0.
07 0.
11 0.
16

0.
19 0.
21

0.
22

Figure 10: Performance Comparison against Baselines.
Table 5: H2-LLM’s Architecture DSE Parameters
Hierarchy Parameter Range

NMP Distribution NMP Channel Number {2, 4, 6, 8} NMP Channels

NMP PE
FPU Number per PE {1, 2, 4, 8} FPUs

PE Frequency {0.4, 0.6, 0.8, 1} GHz
HB I/O Bandwidth {6.4, 12.8, 25.6, 51.2} GB/s

NMP SRAM Buffer
Input Global Buffer {4, 8, 16, 32, 64, 128} KB

Weight Buffer (per PE) {4, 8, 16, 32, 64, 128} KB
Output Buffer (per PE) {0.25, 0.5, 1, 2, 4, 8} KB

Table 6: Max FPU Num./PE under Different HB Bandwidths
HB I/O Bandwidth 6.4 GB/s 12.8 GB/s 25.6 GB/s 51.2 GB/s

0.4/0.6/0.8/1GHz max num. (8, 8, 8, 8) (8, 8, 8, 4) (8, 8, 4, 4) (8, 4, 4, 2)

System Configuration:We configure H2-LLM’s centralized pro-
cessor as a TPU-like processor [35], which contains 8 128×128 sys-
tolic arrays together with 8 SIMD-128 vector processing units run-
ning at 1GHz. The on-chip SRAMbuffer is configured as 128MB. The
memory system contains 8 channels, each with 16 256MB DRAM
banks. The external memory interface is configured as LPDDR5-
6400. The design space of H2-LLM’s HB-NMP architecture is listed
in Table 5. We equip each FPU with 16 MACs and change the FPU
number to adjust each PE’s MAC number in the design space.

To explore the trade-off in HB design, we implement FPUs with
Chisel and synthesize them with 40nm technology. The areas of
FPUs under 0.4/0.6/0.8/1.0GHz are 0.31/0.44/0.59 /0.77mm2. SRAM
buffer’s density is 2.72mm2/MB according to tsmc SRAM compiler.
Each NMP PE’s area is 6.76mm2. HB-related area numbers are
obtained from our real-chip tape-out [55]. Each HB I/O pin’s data
rate is 0.4Gbps. With 128/256/512/1024 pins, the bandwidth per
HB I/O ranges from from 6.4GB/s to 51.2GB/s, resulting in the
HB controller occupying 4.6%/10.7%/19.7%/40.2% of each PE’s area.
The maximum numbers of FPUs per PE for each frequency, under
different HB bandwidths, are listed in Table 6.
Baselines: We compare H2-LLM with three existing designs: (1)
Centralized processor only (CP). We double the centralized pro-
cessor’s computation capacity considering NMP introduces extra
computation resources. (2) In-die NMP-based heterogeneous ar-
chitecture (ID-NMP), which adopts Samsung’s LPDDR5-NMP pro-
posal [39]: Each PE is placed near one bank, featuring 6.4GB/s NMP
bandwidth and one FPU with 16 MACs @ 200MHz. Each chan-
nel’s NMP computation capacity and bandwidth are 102.4GFLOPS
and 102.4GB/s. (3) In-die NMP-based heterogeneous architecture
with enhanced computation capacity (ID-NMP+). ID-NMP+ adopts
AiM’s PE design [41] (i.e., one FPU per PE with 16 MACs @ 1GHz),
providing the max computation capacity among existing commod-
ity in-die NMP proposals [37, 39, 41]. All channels in ID-NMP(+)
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Figure 11: Performance Comparison under Mixed Scenarios.

are NMP channels considering their low computation capacity. The
other configurations are identical to H2-LLM for fair comparison.
Simulation:We extend Ramulator2 [52] to simulate NMP PE’s com-
putation. We adopt Tileflow’s performance model [89] to evaluate
centralized processor operators’ performance and inject the results
into the simulator for end-to-end evaluation. Tileflow supports
the evaluation of attention operator fusion, which can fully exploit
centralized processor’s performance. For energy evaluation, the cen-
tralized processor’s MAC energy is 0.682pJ/MAC, which is synthe-
sized with 10nm technology. For HB-NMP under 0.4/0.6/0.8/1.0GHz,
the MAC energy is 0.974/1.075/1.148/1.365pJ/MAC. In-die NMP’s
MAC energy is 1.172/1.849pJ/MAC under 200MHz/1GHz according
to [43, 69, 78]. SRAM access energy is 0.027pJ/bit according to the
SRAM compiler. Memory access energy of LPDDR5 interface and
HB I/O is 7.0pJ/bit [62] and 0.88pJ/bit [55].

7.2 Comparison with Baselines
Wefirst compare the baselines’ performancewith a fixedH2-LLMde-
sign to demonstrate H2-LLM’s capability under different scenarios.
The selected architecture parameters are underlined in Table 5.
We adopt the data-centric dataflow for ID-NMP, ID-NMP+, and
H2-LLM. During exploration, we iterate the genetic algorithm for
100 rounds and sample 5k individuals per iteration. We select the
Top-50 individuals during each evolution.

The comparison results are summarized in Fig. 10. All results
are normalized to ID-NMP+. For end-to-end latency, we can find
that CP only achieves 27% (geomean) performance of ID-NMP+
due to its limited external bandwidth. The performance gap be-
comes larger when the batch size shrinks (i.e., with more severe
memory-intensive issue). For ID-NMP, although it can outperform
CP by 3.03× (geomean) under the batch size of 1/4, it only achieves
CP’s 71% (geomean) performance when the batch size comes to 16
due to its low computation capacity. Enhancing in-die NMP PE’s
computation capacity can achieve better performance. However,
the speedup of ID-NMP+ is only 1.76× (geomean) compared with
the better-performing results between CP and ID-NMP, constrained
by DRAM technology’s scarce resource provision. Compared with



H2-LLM: Hardware-Dataflow Co-Exploration for Heterogeneous Hybrid-Bonding-based Low-Batch LLM Inference ISCA ’25, June 21–25, 2025, Tokyo, Japan

Batch Size = 4
HE SG LB LG

Batch Size = 16
HE SG LB LG

Batch Size = 4
HE SG LB LG

Batch Size = 16
HE SG LB LG

Batch Size = 16
HE SG LB LG

Batch Size = 4
HE SG LB LG

0.
05

 

0.
06

 

0.
10

 

0.
21

 

0.
07

 

0.
14

 

0.
27

 

0.
45

 

0.
21

 

0.
49

 

0.
87

 

0.
89

 

0.
06

 

0.
07

 

0.
11

 

0.
23

 

0.
08

 

0.
16

 

0.
30

 

0.
48

 

0.
23

 

0.
54

 

0.
94

 

0.
92

 

0
1
2
3
4

0.
05

 

0.
04

 

0.
06

 

0.
16

 

0.
05

 

0.
07

 

0.
13

 

0.
32

 

0.
14

 

0.
21

 

0.
39

 0.
65

 

0.
05

 

0.
05

 

0.
07

 

0.
18

 

0.
06

 

0.
08

 

0.
14

 0.
35

 

0.
16

 

0.
24

 0.
43

 0.
69

 

0.0
0.5
1.0
1.5
2.0 Batch Size = 1

HE SG LB LG

OPT 6.7B

N
or

m
.  

Sp
ee

du
p

Attn-NMP Attn-NMP-Split FC-NMP CC-NMP H2-LLM

LLaMA3 8B

0.
04

 

0.
04

 

0.
05

 

0.
14

 

0.
05

 

0.
05

 

0.
09

 

0.
26

 

0.
12

 

0.
14

 

0.
26

 0.
56

 

0.
05

 

0.
04

 

0.
06

 

0.
16

 

0.
06

 

0.
06

 

0.
10

 

0.
28

 

0.
13

 

0.
16

 

0.
29

 0.
60

 

0.0
0.5
1.0
1.5
2.0

PaLM 8B

N
or

m
.  

Sp
ee

du
p

N
or

m
.  

Sp
ee

du
p

Batch Size = 1
HE SG LB LG

Batch Size = 1
HE SG LB LG

Figure 12: Comparison Against Existing Dataflow Designs.
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Figure 13: Dataflow Designs on H2-LLM v.s. ID-NMP+.

ID-NMP+, H2-LLM can achieve 3.81× (geomean) speedup under
decoding-heavy HE/SG, 1.94× (geomean) speedup under prefill-
heavy LB/LG, and 2.71× (geomean) speedup across all test cases.

We also compare the decoding energy efficiency against these
baselines. In Fig. 10, we can find that CP reports poor energy effi-
ciency due to the high memory access energy of LPDDR5 interface.
ID-NMP’s decoding energy efficiency is slightly better than ID-
NMP+ because of the lower MAC energy. H2-LLM can achieve
1.48/1.54 × (geomean) better energy efficiency compared with ID-
NMP/ID-NMP+ owing to the on-chip SRAM buffer reuse.

We further conduct experiments when requests have different
lengths by mixing the four scenarios evenly. As shown in Fig. 11,
CP and ID-NMP only achieves 24% and 49% of ID-NMP+’s perfro-
mance (geomean), while H2-LLM outperforms ID-NMP+ by 3.24×
(geomean). H2-LLM still performs well under mixed scenarios.

7.3 Performance Analysis
Comparison with Existing Dataflow Designs: To analyse the
performance improvement brought by the data-centric dataflow
abstraction, we compare it against four existing dataflow designs: (1)
Offload all attention operators to NMP [24] (Attn-NMP). (2) Offload
all attention operators to NMP, and split FCs in the FFN block
between NMP and centralized processor [60] (Attn-NMP-Split). (3)
Offload all FC operators to NMP [39] (FC-NMP). (4) Computation-
centric dataflow abstraction, which constrains each operator to
either NMP or normal channels [47] (CC-NMP). We adopt the same
fixed H2-LLM architecture as Sec.7.2 for all dataflow designs. The
DSE budgets are also identical to Sec.7.2 for dataflow exploration.

The end-to-end latency comparison results are demonstrated
in Fig. 12. All results are normalized to FC-NMP. We can find
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Figure 15: Performance Analysis for Architecture DSE.

that Attn-NMP only achieves 14% (geomean) of FC-NMP’s perfor-
mance because it cannot utilize HB-NMP’s acceleration potential
for low-batch FC operators. Although operator fission can improve
Attn-NMP’s performance by 1.11× (geomean), fixed fission strategy
still cannot fully utilize HB-NMP. FC-NMP can attain comparable
performance to CC-NMP/H2-LLM on PaLM 8B and single-batch
OPT 6.7B/LLaMA3 8B. However, under MHA/GQA models with
larger batch size, the memory-intensive attention operators ex-
ecuted on the centralized processor incur substantial overhead,
hurting FC-NMP’s performance. CC-NMP reports 1.24× (geomean)
speedup against FC-NMP by exploiting the acceleration opportunity
provided by memory-intensive decoding operators, but its prefill-
unaware nature mitigates the performance improvement. It behaves
5% (geomean) poorer than FC-NMP on PaLM 8B under the prefill-
heavy LooGLE dataset. By fully exploring operator mapping and
operator fission, H2-LLM’s data-centric dataflow abstraction can
achieve 1.37×/1.11× speedup compared with FC-NMP/CC-NMP.

In Fig. 13, we compare all dataflow designs’ speedup (geomean
across four scenarios) against ID-NMP+. Attn-NMP(-Split) only
achieves 28% (31%) of ID-NMP+’s performance (geomean). Although
FC/CC-NMP outperforms ID-NMP+ by 1.98×/2.45× (geomean),
H2-LLM can further achieve better performance (2.71× geomean
speedup). Therefore, dataflow exploration is vital for fully unleash-
ing hybrid bonding’s acceleration capability against in-die NMP.

To further demonstrate data-centric dataflow abstraction’s per-
formance improvement compared with CC-NMP, we analyse the
proportion of prefill latency in H2-LLM’s end-to-end latency and its
prefill speedup against CC-NMP. As Fig. 14 shows, after decoding
is fully accelerated, prefill takes up 12%-26%/36%-90% end-to-end
latency under decoding-heavy/prefill-heavy cases. By improving
the prefill latency by 1.27× (geomean), our data-centric dataflow
abstraction can provide better execution strategy and end-to-end
performance compared with prefill-unaware CC-NMP.
Architecture Exploration Analysis: To demonstrate H2-LLM’s
performance upper bound under different scenarios, we compare
the performance of the fixed H2-LLM design used in Sec. 7.2 against
the optimal performance after fully exploring the whole design
space in each test case. During full exploration, we enlarge the
population size to 50k and keep other DSE parameters unchanged.

As illustrated in Fig. 15, we can find that compared with the
fixed design, H2-LLM can further gain 1.38× (geomean) speedup
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Figure 17: Comparison among Different Tiling Factors.

and 1.74× (geomean) decoding energy efficiency after full architec-
ture DSE. Under small batch size (i.e., batch size = 1), the designs
with higher HB I/O bandwidth can outperform the fixed design
since all operators are memory-intensive. Under medium batch
size (i.e., batch size = 4), the fixed design can reach near-optimal
performance with a moderate computation-bandwidth ratio. Under
large batch size (i.e., batch size = 16), for OPT 6.7B, the designs with
higher computation capacity can outperform the fixed design due
to the increased computation capacity requirement. For LLaMA3
8B and PaLM 8B, the performance gap shrinks owing to the oper-
ator parallelism exploration brought by the data-centric dataflow
abstraction. In Sec. 7.4, we will further analyse the effect of different
dimensions in H2-LLM’s architecture design space.
Tiling Overhead analysis: In Fig. 16, we analyse H2-LLM’s syn-
chronization and pre-/post-processing (data transfer) overhead,
which accounts for 1.6%-15.7% across benchmarks. The overhead
is dominated by data movement in pre-/post-processing since syn-
chronization bubble is effectively eliminated by dataflow explo-
ration. To analyse tiling factor exploration’s effect on overhead
mitigation, we compare different tiling factors on 8 NMP channels
for OPT’s operators in Fig. 17 (context length 2048, batch size 4),
where the overheads are normalized to each operator’s minimal
ones. The worst tiling factors can incur 1.5×-5.4× higher over-
head than the optimal factors. By adopting the selection process in
Sec. 4.2, H2-LLM can adopt tiling factors with minimal overhead.

7.4 DSE Analysis
In this sub-section, we explore on different dimensions in H2-LLM’s
architecture design space and summarize several architectural impli-
cations for future architecture design. Since all models demonstrate
similar trends to discrete architecture parameters, we showcase the
analysis on LLaMA3 8B without loss of generality. We adopt end-
to-end performance for analysis because operator performance is
an intermediate result, which cannot accurately reveal these trends.
The DSE budget of each architecture design is identical to Sec. 7.2.
Computation-Bandwidth Trade-off: We first analyse the effect
of computation-bandwidth trade-off to decoding performance. Dur-
ing exploration, we fix NMP channel number to 4 and choose the
FPU configs providing max computation capacity under each HB
I/O bandwidth, which are marked as bold in Table 6. The input
global/weight/output buffer sizes are fixed to 32KB/32KB/4KB.
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Figure 18: Computation Bandwidth Trade-off Analysis.
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In Fig. 18, we compare all legal designs’ average decoding per-
formance on four scenarios and list their rankings. The decoding
performance is in proportion to HB I/O bandwidth under single-
batch inference. When batch size is 4, although we can gain better
performance by enlarging the HB I/O bandwidth from 6.4GB/s to
25.6GB/s, the performance cannot attain further improvement from
25.6GB/s to 51.2GB/s. This is because the high controller area cost
constrains the computation capacity. When batch size is 16, the
design with moderate computation-bandwidth ratio can achieve the
optimal performance. The limitation imposed by low computation
capacity becomesmore pronounced under 51.2GB/s HB I/O. Besides,
although we can equip the highest computation capacity under 6.4
GB/s HB I/O, we can hardly get performance improvement due to
the limited bandwidth. Balancing computation and bandwidth is
vital for steady performance across scenarios (e.g., (8FPUs@0.6GHz,
25.6GB/s) in Fig.18, with the highest average ranking).

Takeaway 1: With the increase of batch size (operator arith-
metic intensity), the HB-NMP architecture should be designed
with a suitable emphasis on computational resources.
Takeaway 2: Balancing computation-capacity ratio is neces-
sary to prevent resource over-provision, thereby avoiding a
stagnation in performance improvement.

SRAM Buffer Size: Then, we analyse how HB-NMP’s buffer sizes
affect the decoding performance. By default, the H2-LLM device
equips 4 NMP channels. Each PE contains 8 FPUs running at 0.6GHz,
along with 25.6GB/s HB I/O bandwidth. The buffer size design space
is identical to Table 5. The sizes of input global/weight/output buffer
are fixed to 32KB/32KB/4KB when they are unexplored.

For each buffer size, we evaluate the average decoding perfor-
mance on the four datasets under different batch sizes. As shown
in Fig. 19, increasing the input global/output buffer size can gain
1.05-1.18×/1.09-2.26× speedup under different batch sizes. With the
batch size increasing, the benefits of increasing the input global/out-
put buffer size become more pronounced. This is because the data
volume of input/output tensors is in proportion to the batch size. En-
larging the buffer size can avoid transferring larger tiles repeatedly,
thus improving the performance. On the other hand, increasing the
weight buffer size can bring up to 1.15×/1.12× speedup under the
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Table 7: Resource Distribution Exploration Setup
NMP Channel Number 2 4 8

per PE Setup 8 FPUs @ 0.6GHz
25.6GB/s HB I/O

4 FPUs @ 0.6GHz
12.8GB/s HB I/O

2 FPUs @ 0.6GHz
6.4GB/s HB I/O
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Figure 20: Performance Analysis of Resource Distribution.

batch size of 1/4 but cannot bring better performance when batch
size is 16. This is because weight reuse increases along with the
enlargement of batch size, bringing better overlap between compu-
tation and memory access. When batch size is small, enlarging the
weight buffer size can improve bandwidth utilization, thus reducing
the non-overlapped weight transfer overhead. Therefore, allocating
large enough buffer sizes is necessary to improve the performance
(e.g., 32/32/4KB in Fig. 19, minimal sizes saturating the speedup).

Takeaway 3: Increasing HB-NMP’s buffer size appropriately
is beneficial to the performance.
Takeaway 4: With the increase of batch size, the decoding
performance becomes more sensitive to input/output buffer
size, while its sensitivity to the weight buffer size diminishes.

NMPResource Distribution:We analyse how NMP channel num-
ber affects the performance given the resource budget. As listed in
Table 7, we fix the total computation & bandwidth budgets and dis-
tribute them to 2/4/8 NMP channels. The input global/weight/output
buffer sizes are fixed to 32KB/32KB/4KB, which are adequately large
to eliminate their influence on performance.

Since the NMP channel number affects operator placement,
thereby impacting both prefill and decoding performance, We com-
pare the four datasets’ end-to-end performance under different
batch sizes. From the results shown in Fig. 20, we can find that in-
creasing NMP channel number from 2 to 4 can effectively enhance
the performance because the increased NMP memory capacity al-
lows us to assign more NMP operators and better utilize HB-NMP’s
capability. However, further increasing the channel number can
hardly bring speedup, and even hurts the performance under the
batch size of 16. The reasons are two-fold: First, each channel’s pro-
cessing capability shrinks when we equip more channels, hindering
further performance improvement. Second, configuring all channels
as NMP channels prevents the adoption of operator fission.

Takeaway 5: Distributing NMP resources across more chan-
nels enables the assignment of more NMP operators, which is
beneficial to the performance.
Takeaway 6: Adequate NMP channel allocation is necessary
to avoid wimpy per-channel processing capability under the
given resource budget and better utilize operator fission.

Centralized Processor Exploration: Finally, we explore the rela-
tion between centralized processor’s computation capability and
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Figure 21: Performance Analysis of Centralized Processor.

performance by adjusting the systolic array size. Since the compo-
nents of CPUs/GPUs can also be abstracted as tensor processors
together with control logic, we adopt systolic array size with equiv-
alent computation capability to represent their setups (32TFLOPS of
Intel Sapphire Rapids CPU with AMX extenstion [38], 312TFLOPS
of A100 GPU). As shown in Fig. 21, increasing the computation
capacity can improve the performance, especially in prefill-heavy
scenarios. This is because prefill can be effectively accelerated by
more powerful centralized processor, although decoding gains lit-
tle speedup. Therefore, equipping a powerful enough centralized
processor is necessary to accelerate end-to-end inference.

8 Conclusion
This paper proposes H2-LLM, the first hybrid-bonding-based het-
erogeneous accelerator for edge-side low-batch LLM inference.
H2-LLM comprehensively considers hybrid bonding technology’s
computation-bandwidth trade-off in the architecture design space
and adopts the data-centric dataflow abstraction to fully utilize the
heterogeneous architecture for low-batch LLM inference. Based on
the co-design space, H2-LLM’s DSE framework can find out the op-
timal design for different scenarios. Compared with existing in-die
NMP-based heterogeneous accelerators, H2-LLM achieves 2.72×
geomean speedup and 1.48× geomean better energy efficiency.
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A Artifact Appendix
A.1 Abstract
This artifact contains the source code of H2-LLM’s data-centric
dataflow exploration framework, including the implementation of
an onnx-based model parser and the genetic-algorithm-based explo-
ration engine. In addition, this artifact provides config files, scripts,
and README instructions to reproduce the key experimental re-
sults reported in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Data-centric dataflow exploration algorithm for NMP-
based heterogeneous LLM accelerators.

• Program: Python3 and C++ (for some dependencies).
• Compilation: Python ≥ 3.10 and cmake ≥ 3.12.
• Run-time environment: Ubuntu 20.04.6 LTS (GNU/Linux 5.11.0-
43-generic x86_64) with Python ≥ 3.10.

• Hardware: No specific hardware is required. However, it is recom-
mended to conduct experiments on a CPU server with more than
50 cores for evaluation efficiency.
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• Metrics: Normalized speedup .
• Output: Resulting figures of key experiments.
• Experiments: Scripts are included in the ae folder. Detailed instruc-
tions are provided in ae/README.md.

• How much disk space required (approximately)?: About 3GB.
• How much time is needed to prepare workflow (approximat-
ely)?: About 30 minutes (depending on the time consumption of
installing Python packages).

• How much time is needed to complete experiments (approxi-
mately)?: About 9 hours.

• Publicly available?: Yes. Github link: https://github.com/leesou/
H2-LLM-ISCA-2025.

• Code licenses (if publicly available)?: Apache-2.0 License.
• Workflow automation framework used?: No.
• Archived (provide DOI)?: Yes. DOI link: https://doi.org/10.5281/
zenodo.15078697.

A.3 Description
A.3.1 How to access. The code is publicly available at https://
github.com/leesou/H2-LLM-ISCA-2025 and is archived on https:
//doi.org/10.5281/zenodo.15078697. We recommend obtaining the
artifact from Github and using the submodule mechanism to install
third-party dependencies.

A.3.2 Hardware dependencies. No specific hardware is required.
However, we recommend conducting experiments on a CPU server
with more than 50 cores for evaluation efficiency.

A.3.3 Software dependencies. The scripts need to run on Linux
systems with Python ≥ 3.10 and cmake ≥ 3.12. Please refer to
README.md for Python package installation instructions.

A.4 Installation
Installation instructions are provided in the artifact. Please check
the README.md in the project folder for more details.

A.5 Experiment workflow
Experiment scripts are provided in the ae folder. Please check
ae/README.md for more details.

A.6 Evaluation and expected results
After finishing execution following the instructions in ae/README
.md, all plotted results are saved in ae/plots folder, which cor-
respond to the results in Figure 10 (upper-half speedup compar-
ison), 12, 13, 14, and 15 (bar-graph speedup comparison). Since
we cannot directly provide the simulator due to the data privacy
issue, we adopt a rough performance model to estimate NMP/NPU
operators’ latency, and skip the evaluation of energy-related re-
sults during the AE process. However, the DSE framework itself
supports the evaluation of both latency and energy by integrating
simulators according to our preserved interface. The results can
be slightly different from that in the paper, but they can still prove
H2-LLM’s superiority against all baselines. We also provide refer-
ence plots in ae/plots_ref folder. Please check ae/README.md for
more information on result validation.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-
badging-current

• https://cTuning.org/ae
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