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Abstract—The computational and memory demands of Deep
Learning (DL) models, from convolutional neural networks to
Large Language Models (LLMs), are experiencing a notable
surge. The sparsification (e.g., weight pruning and sparse at-
tention) represents a significant approach to reducing latency
and energy consumption. However, it is non-trivial to identify a
good trade-off between model accuracy and hardware efficiency.
Existing work has sought to mitigate the hardware complexity
overhead through structured sparsity, yet the resulting accuracy
loss remains considerable (e.g., more than 6% accuracy drop
with 50% structured sparsity on OPT-6.7B and Llama2-7B).

To address the above challenges, this paper proposes Trans-
posable Block-wise Structured Sparsity (TBS). Our key insight
is that the weight matrices of the forward and backward pass
are transposed to each other during DL training. Exploiting this
transposition property facilitates obtaining a structured sparsity
pattern that is closer to the unstructured sparsity. In contrast,
existing studies explore only one-dimensional structured sparsity.
In light of these observations, we propose the transposable
block-wise structured sparsity pattern with an efficient end-to-
end sparse training method. This method improves accuracy by
up to 2.58% over other structured sparsity studies under the
same sparsity degree. At the micro-architecture level, we propose
TB-STC, a Transposable Block-wise N:M Sparse Tensor Core
to efficiently and flexibly facilitate the TBS pattern. TB-STC
introduces an adaptive codec architecture for on-the-fly storage
format conversion with a higher bandwidth utilization (1.47×),
and implements an I/O-aware configurable architecture for
sparsity-aware scheduling with a better computational utilization
(1.57×). Compared with existing work, TB-STC improves the
Energy-Delay Product (EDP) by an average of 3.82× and offers
an enhanced accuracy-EDP Pareto frontier across various sparse
DL models.

I. INTRODUCTION

Deep Learning (DL), from Convolutional Neural Net-
works (CNNs) to transformer-based Large Language Mod-
els (LLMs), has achieved remarkable success across various
domains [20], [31], [63], [64]. This success is accompanied
by the exponential growth in computation and model size by
several hundred times per year, which has far outpaced the
advancements in hardware’s capability (about 2-3× per two
years) [13], [66]. As a result, the surge in computational and
memory demands has led to a significant increase in latency
and energy consumption for the inference of DL models [20],
[34], [63], [77].

The sparsification (e.g., weight pruning [1], [19], [42] and
sparse attention [50], [68]) represents a significant approach
to reducing latency and energy consumption [81]. However,
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Fig. 1. Compared with other work, TB-STC offers an enhanced accuracy-
EDP Pareto frontier (results from BERT [8] model on sst-2 [55] dataset).

it is non-trivial to identify a good trade-off between model
accuracy and hardware efficiency. Existing sparsity patterns
are broadly classified into the Unstructured Sparsity (US)
and Structured Sparsity (SS) patterns. On the one hand, the
US pattern provides good accuracy but introduces significant
hardware complexity overhead. For example, the US-based
architecture introduces the area overhead by over 80% han-
dling randomly distributed non-zero elements [57]. On the
other hand, existing work has sought to mitigate the hardware
complexity overhead through the N:M structured sparsity [11],
[25], [27], [37], [70], [83], which is to retain at most N
elements from every M elements (the remaining elements
are zero) of the reduction dimension1. However, existing SS
patterns still introduce considerable accuracy loss, e.g., >6%
average accuracy drop using the 50% structured sparsity on
OPT-6.7B [79] and Llama2-7B [41], [63], due to the following
challenges:

Challenge-1: Existing N:M structured sparsity has lim-
ited mask-space with only one-dimensional sparsity, lead-
ing to considerable accuracy loss. Our key insight is that
the weight matrices of the forward and backward pass are
transposed to each other during DL training. Specifically,
sparse training [26], [38], [62], [75] yields superior accuracy
compared to the fine-tuning approach [14], [80]. During sparse
training, the sparse pattern is not fixed during the forward

1To illustrate the dimensions of the input matrices (e.g., A and B), we refer
to the dimensions that remain in the resulting matrix (e.g., D) as independent
dimension, and another as reduction dimension (as shown in Fig. 3(a)).
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Fig. 2. Overview of TB-STC, a Transposable Block-wise N:M Sparse Tensor Core, which is to fully unleash the potential of the proposed TBS pattern for
an enhanced accuracy-EDP (Energy-Delay Product) Pareto frontier under various sparse DL workloads.

and backward stages and often changes in both the row
and column dimensions [1], [82]. Therefore, sparse training
encompasses a vast mask-space (i.e., sparse representation
space). The transposable nature between the two stages results
in sparse training exhibiting sparsity in both dimensions. In
contrast, existing SS patterns only explore one-dimensional
sparsity. Specifically, current N:M sparsity considers only the
SS patterns in the reduction dimension (i.e., row-wise), but not
the independent dimension (i.e., column-wise) simultaneously.

To fully exploit the transposition property of DL train-
ing, this paper proposes Transposable Block-wise Structured
Sparsity (TBS), a novel sparsity pattern that considers both
the reduction and independent dimensions. By fully utilizing
this transposition property, TBS provides a vast mask-space
and obtains a structured sparsity pattern that is closer to the
unstructured sparsity. As shown in Fig. 4(b), the TBS pattern
is much more similar to the US pattern. Motivated by these
observations, we propose TB-STC, a Transposable Block-wise
N:M Sparse Tensor Core. TB-STC is to fully unleash the po-
tential of the proposed TBS pattern for an enhanced accuracy-
EDP (Energy-Delay Product) Pareto frontier under various
sparse DL workloads (Fig. 1). In particular, TB-STC aims at
improving the bandwidth and computational utilization at the
micro-architecture level to tackle the following challenges:

Challenge-2: Existing storage formats introduce non-
contiguous and redundant memory accesses for the TBS
pattern, resulting in low bandwidth utilization. On the
one hand, the single-dimensional compression (SDC) [37],
[42] format compresses the sparse matrix according to the
maximum number of non-zero elements in each row. However,
the TBS pattern introduces N:M sparsity in the independent
direction (i.e., row-wise), whereby the number of non-zero
elements in each row may not be identical, leading to a consid-
erable amount of redundant memory access overhead. On the

other hand, the compressed sparse row (CSR) [3] format stores
the non-zero elements and corresponding sparse indices with
minimal redundancy, but introduces non-continuous memory
accesses. These storage formats result in a memory bandwidth
of a mere 38.2% when processing the TBS pattern.

Challenge-3: The sparsity degree differences within and
between the blocks cause workload imbalance, leading
to low computation utilization. Existing sparse acceleration
studies focus only on the one-dimension workload balancing
(e.g., row-wise reordering [27], [56]), leaving no support
for both the reduction and independent dimensions. On the
one hand, inter-PE (processing elements) imbalance occurs
as computational tasks are often more intensive for blocks
with a higher concentration of non-zero entries, resulting in
some PEs being overburdened while others are underutilized.
On the other hand, intra-PE imbalance occurs as the non-
zero distribution differs in the reduction and independent
dimensions. Results show that the workload imbalance leads
to a low computation utilization of 45.50%.

To address the above challenges, this paper makes the
following contributions:

1) We propose the transposable block-wise structured
sparsity pattern with an efficient end-to-end sparse
training method for Challenge-1. TBS improves the
accuracy by up to 2.58% compared with existing SS
pattern studies, thanks to its vast mask-space. To the
best of our knowledge, we are the first to explore N:M
sparsity in both reduction and independent dimensions.

2) We propose an adaptive codec architecture to achieve
on-the-fly adaptive format conversion with a dual-
dimensional compression format for Challenge-2. En-
suring continuous memory access while removing re-
dundancy in different dimensions, TB-STC boosts the
bandwidth utilization by 1.47×.
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3) We propose an I/O-aware configurable architec-
ture with hierarchical sparsity-aware scheduling for
Challenge-3. TB-STC leverages the intrinsic properties
of TBS with dataflow-hardware co-design at both inter-
and intra-block levels. Compared with direct mapping,
TB-STC enhances the computing utilization by 1.57×.

We evaluate TB-STC on a variety of DL models (e.g.,
ResNet, BERT, and OPT-6.7B). Experimental results show
that, TB-STC improves the Energy-Delay Product (EDP) by
an average of 3.82×, and offers an enhanced accuracy-EDP
Pareto frontier across various sparse DL models.

II. PRELIMINARY AND MOTIVATION

A. The N:M Sparsity

Sparse matrix-matrix multiplication (SpMM, D = A×B+
C), which is a fundamental operator in sparse computation, is
widely used in many sparse neural networks [54], [61], [65].
In SpMM, a sparse matrix A is multiplied by a dense matrix
B and added by a matrix C to generate a dense matrix D.

The N:M sparsity (i.e., structured sparsity) [4], [11], [25],
[27], [70], [83] achieves a better trade-off in terms of hardware
efficiency compared to US [24], [49], [56], [57], [78], due to
the consideration of both sparsity and hardware overhead. To
better explain the properties of N:M sparsity, we make a few
statements here [27].

• Sparsity pattern. It refers to the position and number of
non-zero elements in the sparse matrix. For example, the
tile-wise N:M sparsity pattern is that at most N non-zero
elements out of every M elements (Fig. 4(a)).

• Sparsity dimension. It refers to the dimension that
implements the N:M sparsity. It should be noted that this
concept does not exist in the US pattern. For example, in
the sparse matrix of Fig. 3(b), the sparsity dimension is
the reduction dimension (e.g., row-wise in here).

• Sparsity degree. It refers to the proportion of zero
elements in the whole sparse matrix. Sometimes, we also
use density degree to represent sparsity degree (density
degree = 1− sparsity degree).

As shown in Fig. 4(a), tile-wise N:M sparsity (TS) [4], [83]
is the first proposed N:M sparsity pattern, which is currently
applied in the NVIDIA Sparse Tensor Core [6], [47]. However,
TS is challenging to explore more flexible sparsity due to
the limited sparsity degrees. The granularity of row-wise N:M
sparsity (RS) is finer than TS, so it has a larger representation
space and expresses more sparsity degrees. The typical work
includes VEGETA (RS-V) [27] and HighLight (RS-H) [70].
VEGETA explores the flexibility between different rows, and
HighLight utilizes a hierarchical sparsity ratio to achieve
multiple sparsity degrees. US is the most flexible sparsity
pattern, achieving element-wise sparsity. However, due to the
random and irregular data distribution, it is challenging in
practice to achieve performance improvements that correspond
to the level of sparsity. Therefore, the US pattern is not the
focus of this paper.
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Fig. 3. (a) NVIDIA Tensor Core computes matrix multiplication D = A ×
B+C in the form of inner products. (b) NVIDIA Sparse Tensor Core (STC)
supports the SpMM operator by adding the multiplexer.

B. NVIDIA Sparse Tensor Core Hardware Architecture

NVIDIA Tensor Core [45]–[47] is a vital hardware archi-
tecture to accelerate matrix multiplication in modern deep
learning. As shown in Fig. 3(a), Tensor Core computes ma-
trix multiplication in the form of inner products, and we
have simplified some details for ease of illustration. NVIDIA
introduced Sparse Tensor Core (STC) in Ampere and later
architectures [45], [46] to efficiently support N:M sparsity (2:4
sparsity in particular). As shown in Fig. 3(b), STC achieves
up to 2× performance improvement by only adding minimal
hardware overhead (i.e., the multiplexer). N:M sparsity has
become one of the most critical factors for NVIDIA GPU to
provide higher computing performance [45].

III. EFFICIENT SPARSE TRAINING WITH TRANSPOSABLE
BLOCK-WISE N:M SPARSITY

This section introduces the TBS pattern and systematically
analyzes the representation space of the existing N:M sparsity
patterns (Sec. III-A). Then, we introduce end-to-end sparse
training and sparsification methods with TBS pattern on mod-
ern DL models (Sec. III-B).

A. Transposable Block-wise N:M Sparsity Pattern

1) Overview of TBS: Although N:M sparsity patterns have
become a promising method to improve hardware utilization,
the impact on model accuracy still cannot be ignored. Existing
N:M sparsity patterns primarily explore flexibility in the
reduction dimension and neglect freedom in other dimensions,
which fundamentally contributes to their accuracy issues.

We propose a novel transposable block-wise N:M spar-
sity (TBS) pattern, which has a larger representation space
(Fig. 4(a)). Our TBS pattern explores sparsity by both block
and dimension based on the following two observations: First,
because different parts of a layer show different sparse distri-
butions, the block-wise sparsity has finer granularity than the
tile-wise and row-wise. Concretely, we split the sparse matrix
into blocks of size M×M . Each block is still the N:M sparsity
pattern, but each block can select a different N . Here, N is
a factor of M (e.g., M = 8, N ∈ 0, 1, 2, 4, 8). Second, each
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block can select non-zero elements not only in the reduction
dimension, but also in the independent dimension, improving
the representation space and model accuracy.

2) Representation Space Analysis: We introduce a new
measure, called Mask-Space (MS), which is the concept of
the representation space 2. We define MS as follows: For a
matrix of a certain size, the number of possible masks for a
given sparsity pattern with the same sparsity granularity. We
selected the following representative N:M sparsity patterns:

• Tile-wise N:M sparsity (TS) pattern. It means each tile
with M elements has at most N non-zeros [42]. There
are some variants of TS with more constraints [11], [25].

• Row-wise N:M sparsity (RS) pattern. VEGETA [27] (RS-
V) allows different N to be used between different rows.
HighLight [70] (RS-H) utilizes a hierarchical sparsity
ratio to achieve multiple sparsity degrees.

Here, we assume that the matrix size is X×Y (Y is the size
of the reduction dimension), and Cq

p denotes the combination
p!

q!(p−q)! . M is the sparsity granularity, k = log2 M . The MS
calculation expressions for the above N:M sparsity pattern are
as follows:

MSTS =

i⩽k∑
i=0

C2i

M

X·Y
M (1)

MSRS−V =

[
i⩽k∑
i=0

C2i

M

Y
M

]X

(2)

MSRS−H =
i<2·M∑
i=M

[(
CM

i × C
M
2

M

M
)X·Y

i·M
+ 2 ·

(
CM

i

)X·Y
i·M

]
(3)

MSTBS =

[
i⩽k∑
i=0

2 · C2i

M

M

]X·Y
M2

(4)

2We refer to Mask-Diversity (MD) proposed in NM-T [25], which only
considers the possible number of masks with the same sparsity. So, the MD
is unable to accurately describe the difference of sparsity patterns at different
sparsity degrees.

As shown in Fig. 4(b), we also show the mask similarity
of different N:M sparsity patterns with US. We find that the
TBS has 85.31%∼91.62% mask similarity with the US, far
exceeding other N:M sparsity patterns. We further analyze
the relationship between the MS and the model accuracy.
As shown in Fig. 4(c), we choose the typical X = Y and
M = 8 to compare MS between different N:M sparsity
patterns. First, compared with the existing N:M sparsity pat-
terns, TBS achieves higher accuracy under a similar MS. TBS
capitalizes on the potential offered by dimensional flexibility
and significantly improves model accuracy, approaching that
of the US pattern. Second, compared with the US pattern, TBS
achieves similar accuracy in a much smaller MS.

B. Efficient Sparse Training Method

1) End-to-end Training Flow: Unlike existing pruning
methods fine-tuning from pre-trained models, we train a
sparse model from scratch. We find that applying the N:M
sparsity pattern with fixed dimensions leads to losing much
information. It is because not all non-zero elements are evenly
distributed along a certain dimension, but in all dimensions.
That is why our TBS pattern can retain more important
elements and improve the model’s accuracy.

Our key idea is to use the learnable mask to process the
original weights and obtain the masked weights, and these
weights are as close as possible after training. In each epoch,
the main difference between sparse training and dense training
lies in both forward pass and backward propagation. In the
forward pass, we first obtain the threshold on the entire weight
according to the target sparsity. Then, we divide the entire
weight into several blocks and generate a number of masks
that conform to TBS and are closest to the unstructured mask.
In the backward propagation, the model will calculate the
gradient of the input activation values under the guidance of
the TBS mask.

2) Sparsification of TBS: Essentially, our approach centers
on identifying the N:M pruning pattern that closely aligns
with the unstructured pruning pattern, comprising three key
steps. The pseudo-code of the approach above is shown in
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Algorithm 1: TBS Sparsification
Input:
- Model: the dense model to be pruned.
- ts: the target sparsity degree.
- M : the size of a sparse block.
- Ncandidate = {N1, N2, · · · , NK}: candidate numbers
of non-zero elements for each sparse block.
Output: the TBS pruning pattern.
/* Step 1: Unstructured Pruning */

1 Prune Model to sparsity st in an unstructured manner
2 Divide weight matrices into M ×M patches P
3 for p in P do

/* Step 2: Determine N */
4 Get the binary unstructured pruning pattern Dp,un

5 Calculate the sparsity degree sp of Dp,un

6 Np = argmin
Ni

|Ni/M − sp|

/* Step 3: Determine Pruning Direction */
7 Get pruning pattern Dp,1 in the reduction

dimension by retaining elements with top-Np

absolute values in each block
8 Get TBS pattern Dp,2 in the independent dimension
9 Dp = argmin

Dp,nm∈{Dp,1,Dp,2}
L1(Dp,nm,Dp,un)

10 Return the TBS pruning pattern.

Alg. 1. First, we apply unstructured pruning with the target
sparsity degree ts to acquire the unstructured pruning pattern
Dun. Second, we divide the weight matrices of each layer into
M ×M patches P and determine the optimal number of non-
zero elements Np from Ncandidate for each patch p. This is
achieved by minimizing the sparsity difference between N:M
pruning and unstructured pruning, ensuring the overall sparsity
meets the predetermined target. Third, we select the pruning
direction (reduction or independent dimension) and get the
N:M pruning pattern Dp. Specifically, we retain the elements
with the top-Np absolute values for each block. Calculations
are carried out in both directions, resulting in two different
pruning patterns Dp,1 and Dp,2. The pattern closest to the
unstructured pruning pattern Dp,un in terms of L1 distance
is chosen.

Note: It is important to clarify that the sparsity pattern
is orthogonal to the pruning criteria [1]. Typical pruning
criteria include not only magnitude [17], [19], [84], but also
gradient [59], [72], Hessian [12], [32], and so on [33]. As
verified in our experiments (Table II), TBS outperforms other
N:M sparsity patterns in terms of accuracy across different
pruning criteria.

IV. OVERVIEW OF TRANSPOSABLE BLOCK-WISE N:M
SPARSE TENSOR CORE ARCHITECTURE

Tensor Core is a vital hardware unit on NVIDIA GPUs that
accelerates matrix multiplication computations. Since its spe-
cific hardware architectural details are not publicly available,
we refer to the Tensor Core architecture in related work [24],
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B Distribution (MBD) unit.
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[42], [78], as shown in Fig. 5(a). To support the TBS pattern,
TB-STC is modified based on the original Tensor Core archi-
tecture with lightweight hardware units (Fig. 5(b)), including
multiple Diverse Vector PEs, an adaptive codec unit, and a
matrix B distribution (MBD) unit. The codec unit processes the
corresponding matrix and sends the matrix’ values and indices
to DVPEs and the MBD unit, respectively. The MBD unit then
selects and rearranges the matrix B elements according to the
sparse indices. The final result is written back to the register
files or on-chip memory via the codec unit.

As shown in Fig. 6(a)-(c), we compare the differences in
datapaths on a PE among NVIDIA STC, RM-STC, and TB-
STC. STC adds multiplexers on the basis of TC to support
the TS pattern, whose additional overhead is very small. RM-
STC adds complex hardware modules (including gather and
union modules) to support the US pattern, whose irregularity
greatly burdens the hardware (Fig. 6(d)). TB-STC efficiently
supports a more flexible TBS pattern by introducing acceptable
hardware modules. When integrated on the A100 GPU, it only
requires 1.57% additional area, which is less than RM-STC
(about 1.8%).
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In Sec. V, we propose an adaptive codec architecture to
improve bandwidth utilization. It includes an efficient storage
format and a codec unit to implement on-chip low-overhead
format conversion. In Sec. VI, we propose an I/O-aware
configurable architecture with a hierarchical sparsity-aware
scheduling strategy to enhance computation utilization. We
exploit the inherent fine-grained balance characteristic of TBS
to achieve workload balancing.

V. ADAPTIVE CODEC ARCHITECTURE WITH
DUAL-DIMENSIONAL COMPRESSION FORMAT

Existing sparse storage formats face low bandwidth utiliza-
tion because they cannot effectively express our proposed TBS
pattern, which has different dimensions (e.g., row/column-
wise) for different sparse blocks. As shown in Fig. 7(a), the
SDC format compresses the sparse matrix according to the
maximum number of nonzero elements in each row through
padding invalid elements (e.g., zero) to ensure regular memory
access. However, the irregular distribution of TBS leads to a
large amount of redundant memory access overhead (>61.54%
on average). As shown in Fig. 7(b), the CSR format only stores
non-zero elements and corresponding sparse indices with little
redundant memory access overhead. However, the CSR format
faces the problem of non-continuous memory access, and
this irregular memory access behavior will reduce memory
bandwidth utilization (<38.2%).

To efficiently support the TBS pattern, we propose an
adaptive codec architecture to achieve on-the-fly format con-
version to take advantage of both the storage format and
the computation format (Sec. V-B). Based on this idea, we
first propose a dual-dimensional compression (DDC) method
(Sec. V-A), the key idea is to represent the sparsity dimension
and sparsity degree through a hierarchical approach.

A. Dual-dimension Compression Format

DDC format stores the sparse matrix in a block-wise fash-
ion, including inter-block and intra-block storage (Fig. 8(a)).
For inter-block storage, we record the information of each
matrix block using an Info. table, whose size is the number
of matrix blocks × 16 bits. We use the 1-bit Sparsity
dim. to denote the actual N:M sparsity dimension of the
matrix block (i.e., row/column-wise), and the 3-bit Sparsity
ratio to denote the N in the sparsity ratio (i.e., N:M).
The 12-bit Element offset represents the storage address
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Fig. 8. (a) Storage format design for TBS. We divide the sparse matrix storage
into two parts: inter-block storage and intra-block storage. (b) The codec unit
implements the conversion between storage and computation formats for the
sparse matrix.

offset of the first element in the matrix block. For intra-block
storage, we store the sparse matrix blocks according to the
sparsity dimension. For example, Fig. 8(a) shows the row-
wise and column-wise 2:4 sparse matrix block in yellow and
blue, respectively. Therefore, we store them in a compressed
format according to their respective sparsity dimension.

B. Adaptive Codec Unit

We design an adaptive codec unit for the PE array to
take advantage of both the storage and computation formats,
as shown in Fig. 8(b). The codec unit is to implement the
conversion between the storage and computation format. The
codec unit mainly consists of a group of queues, a merger
network, and several multiplexers. The queue group stores the
input elements according to the indices and then outputs the
processed elements when their size exceeds a given threshold.
The merger network handles the conflicts during the output
process, and merges the remaining elements at the final
timestep.

Fig. 9(a) shows the N:M sparsity with reduction dimensions,
which requires no format conversion. Fig. 9(b) illustrates the
difference between the storage and computation format for the
N:M sparsity with independent dimensions:

• The storage format: compress the non-zero values along
the independent dimension (i.e., column-wise) to mini-
mize the storage overhead.

• The computation format: compress the non-zero values
along the reduction dimension (i.e., row-wise) to maxi-
mize memory access efficiency.

Fig. 9(c) further shows an illustrative example of the format
conversion (from storage to computation) for 2:4 sparsity
with independent dimension in Fig. 9(b). Firstly, the codec
unit utilizes the indices of reduction dimension (Rid) and
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Fig. 9. Format conversion approach for TBS. (a) The N:M sparsity with reduction dimension does not need format conversion. (b) The N:M sparsity with
independent dimension needs format conversion. (c) There is an example of the format conversion approach using the sparse matrix of (b). We show the
conversion from storage format to computation format in detail.

the indices of independent dimension (Iid) to identify the
position of each value in the original matrix block. Then, the
codec unit takes two elements in the storage format as input
(including the value and its Sid) at each timestep. The format
conversion is mainly implemented by a queue group that stores
the input elements according to the Sid. Then, the elements
in the computation format output from the queue when its size
exceeds a threshold (here is 2). Thus, the format conversion
outputs “s&t”, “w&x”, and “y&z” at the timestep 1, 2, and 3,
respectively. In the last timestep, the codec unit combines the
remaining elements and outputs them to the PE array.

We evaluate the bandwidth utilization under different num-
bers of DVPEs, with the 64 GB/s peak off-chip memory
bandwidth. With the strong support of the adaptive codec
architecture, we achieve an average improvement of 1.47×
in memory bandwidth utilization compared to other methods.

VI. I/O-AWARE CONFIGURABLE ARCHITECTURE WITH
HIERARCHICAL SPARSITY-AWARE SCHEDULING

To solve the challenge of low computing utilization caused
by workload imbalance, we propose an I/O-aware configurable
architecture based on the TBS for the hierarchical sparsity-
aware scheduling strategy. We exploit the inherent characteris-
tics of TBS with the dataflow-hardware co-design from inter-
block and intra-block, respectively.

A. I/O-aware Configurable Architecture

1) Configurable Reduction Network Architecture: Vector-
based PE (VPE) 3 is the basic component of Tensor Core [42],
using the SIMD fashion to drive more data with one instruc-
tion for highly parallel computation. Fig. 10(a) shows the
architecture of Diverse VPE (DVPE). Each reduction node
(denoted as R in the figure) provides configurable functions

3Also called as Dot Product Unit [78].

(a) Diverse VPE (DVPE)
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Fig. 10. (a) The alternate unit of DVPE balances the number of output
elements by buffering. (b) The MBD unit consists of the MUX array and
transpose array to efficiently index valid elements in matrix B.

of accumulation or transmission to support different ratios of
N:M sparsity. However, it still requires a large bandwidth in
terms of output. For example, assuming that each multiplier
in the DVPE outputs the final result (i.e., all reduction nodes
perform the transmit function), the DVPE’s output requires 4
× bandwidth and adders to handle the accumulation. Our key
idea is to take advantage of the correlation between different
matrix blocks and buffer the remaining elements, which will
merge with the output result next time. Based on this idea,
we design the alternate unit in DVPE, which can effectively
alleviate the impact of workload imbalance on the output.

2) Configurable Input Selector: The Matrix B Distribution
(MBD) Unit supports both row-major and column-major stor-
age formats by configurable MUX array and transpose array
(Fig. 10(b)). The MUX array selects valid elements from
matrix B under the sparse indices of matrix A. The transpose
array transforms the order of rows and columns for the matrix
tile to facilitate DVPE computation. Multiplexers C0, C1, and
C2 control the execution order of the MUX array and the
transpose array according to the storage type. Finally, C3
outputs the reorganized data from matrix B.
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it. (c) For the intra-PE workload imbalance problem, we propose an intra-block sparsity-aware mapping method and use (d) as an example to explain it.

B. Hierarchical Sparsity-Aware Scheduling

1) Inter-block Scheduling: We propose an inter-block
sparsity-aware scheduling method, which alleviates the prob-
lem of low PE utilization, especially when there is a significant
difference in sparsity degrees between matrix blocks. Our
key idea is to use locality to balance the computational
cost between consecutive matrix blocks to reduce the overall
computational cost. As shown in Fig. 11(a), if we directly map
the computational workload (i.e., matrix blocks a ∼ e) to PEs,
we need a total of 10 PE×cycles of computational overhead,
and the PE utilization is only 50%. Therefore, we design a
scheduling unit between the on-chip buffer and PEs, which
sends the workload (i.e., matrix block) to the PE according to
the current workload sparsity degree. Compared with the naive
scheduling method, the inter-block sparsity-aware scheduling
method only needs 5 PE×cycles of computational overhead.

As shown in Fig. 11(b), we illustrate the inter-block
sparsity-aware scheduling process. The scheduling unit loads
at most two matrix blocks from the on-chip buffer per cycle
and then decides which matrix block to send to the PE based
on the workload information. In cycle 0, the scheduling unit
stores a, and the PE starts computing b. In cycle 1, since
matrix block b needs two cycles to finish, we store both c and

d in the scheduling unit. In cycle 2, the scheduling unit sends
the matrix block c to the PE and stores the e. In cycle 3, the
scheduling unit merges and sends the matrix blocks a and d
to the PE. In cycle 4, the PE finishes the computation of the
last matrix block e.

2) Intra-block Scheduling: We propose an inter-block
sparsity-aware mapping method, which avoids the intra-PE
workload imbalance caused by the independent dimensions
N:M sparsity. Our key idea is to exploit the balance property
for the total number of non-zero elements in the matrix block
(i.e., the total number is always an integer multiple of M).
As shown in Fig. 11(c), for naive mapping, the PE needs
to take four pipeline cycles and has severe under-utilization.
Therefore, we combine the four consecutive elements located
in different rows and map them to PE together. Specifically,
since the second row of the sparse matrix has only one
element, we compute it together with the last element of the
first row to achieve workload balance. The output of different
elements is processed by the reduction node and alternate unit
inside PE. The intra-block sparsity-aware mapping method can
achieve higher PE utilization than the naive mapping method.

As shown in Fig. 11(d), we show that DVPE executes
the matrix block computation with independent dimension
N:M sparsity, omitting some non-essential details. In cycle
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0, DVPE reads the concatenated sparse matrices A and the
corresponding elements of B onto the input registers. Then,
DVPE completes the corresponding multiplication computa-
tion in cycle 1, and loads the data for the next timestep. In
cycle 2, the reduction node R0 performs the accumulation
function to add the partial sum D(0, 0), and the R1 performs
the transmit function to by-pass the partial sum D(0, 0) and
final result partial sum D(1, 0). In cycle 3, the R2 outputs the
final result D(0, 0) and D(1, 0), the former result is accumulate
from two partial sum D(0, 0). In cycle 4, the DVPE outputs
the remaining results in a pipelined manner.

VII. EVALUATION

A. Experiment Setup

1) Evaluation methodology: The TB-STC architecture
mainly includes a codec unit, an MBD unit, and 8 DVPE
arrays. Each DVPE array has 2×8 DVPEs. Each DVPE
consists of 8 FP16 multipliers, an alternate unit, and the
corresponding reduction nodes. The MBD unit mainly consists
of 16 8-to-1 multiplexers and four 8-to-8 transpose units.

We perform Register Transfer Level (RTL) implementation
for each hardware unit and evaluate the area and power
overhead. We use Sparseloop [71] to evaluate the power
consumption of the DVPE arrays and memory access modules.
Sparseloop is a widely used tool for analyzing and mod-
eling the power consumption of sparse accelerators. Since
Sparseloop cannot model the codec unit, we use Synopsys
Design Compiler [60] to evaluate the power consumption of
the codec unit and the area overhead of all logic units. We
use the Ramulator [28] and DRAMPower [5] to get the cycle-
level evaluation and energy results of DRAM. We use CACTI
7 [43] to obtain the area overhead of the on-chip buffer. For
uniform comparison, we scale them to 7nm process technology
according to [53], [58], as in previous studies [24], [39], [49].
In addition, we design a cycle-level performance simulator to
model the hardware behavior and evaluate execution cycles.
For a fair way, we model and evaluate the overhead in the
same way for all baselines. We refer to the configuration of
these works and keep the same peak performance, on-chip
memory capacity, and 64GB/s off-chip memory bandwidth.

2) Baselines: To compare the capabilities of different N:M
sparsity patterns, we select three baseline categories and their
representative works as our knowledge.

• Tile-wise N:M sparsity (TS). It means each tile with M
elements having at most N non-zero elements. NVIDIA
Sparse Tensor Core (STC) [42] supports 2:4 sparsity with
minimal hardware overhead. We also select the Tensor
core with dense manner denoted as TC.

• Row-wise N:M sparsity (RS). It explores the fine gran-
ularity N:M sparsity on different rows. The typical work
includes VEGETA [27] and HighLight [70]. HighLight
utilizes a hierarchical sparsity ratio to achieve multiple
sparsity degrees.

• Unstructured sparsity (US). To illustrate the superiority
of the TBS pattern, we also make a comparison with

TABLE I
COMPARISON OF ALGORITHM ACCURACY ON RESNET AND BERT.

Models &
datasets

ResNet-50 ResNet-18 BERT AverageCifar10 ImageNet sst-2 mrpc

Sparsity
degree1 75% 75% 50% 50% -

Dense 95.04 89.08 92.32 84.04 90.12
US 94.93 88.15 91.43 83.09 89.40 (-0.00)

TS 94.32 86.37 90.25 81.86 88.20 (-1.20)
RS-V 94.32 86.89 90.37 81.84 88.36 (-1.04)
RS-H 94.79 86.61 90.48 81.62 88.38 (-1.02)

TBS (Ours) 94.91 87.53 91.38 83.09 89.23 (-0.17)
1 TS employs 4:8 sparsity, so its sparsity degree is 50%.

TABLE II
COMPARISON OF ALGORITHM ACCURACY ON OPT-6.7B AND

LLAMA2-7B.

Sparsity pattern OPT-6.7B Llama2-7B Average
Wanda SparseGPT Wanda SparseGPT

Dense 64.39 64.39 70.15 70.15 67.72
US (50%) 60.21 62.22 67.00 66.80 64.06 (-0.00)
TS (4:8) 56.32 59.54 63.50 63.93 60.82 (-3.24)

RS-V 57.78 59.89 63.61 64.45 61.43 (-2.63)
RS-H 57.81 59.86 63.68 64.57 61.48 (-2.58)

TBS (Ours) 59.68 61.82 65.23 66.88 63.40 (-0.66)

unstructured sparsity acceleration. RM-STC [24] is the
SOTA work to accelerate training and inference on Tensor
Core, exploiting unstructured sparsity.

3) Algorithm Setup: As described in Sec. III-B, we set
M = 8, Ncandidate = {0, 1, 2, 4, 8} in this experiment. We
evaluate different sparsity patterns on CNN, transformer, and
LLMs. For those models that need to be retrained, we use a
test dataset independent of the training dataset to evaluate their
model accuracy.

CNN models. To evaluate the effectiveness of our pro-
posed method on CNNs, we prune the classical ResNet-
50 and ResNet-18 [21] models on the Cifar-10 [29] and
ImageNet [30] datasets, respectively. All layers are pruned
except the stem layer and the final fully-connected layer.

Transformer model. We conduct experiments using BERT-
base [9] across different tasks in the GLUE benchmark [67],
namely MRPC [10] and SST-2 [55], with the goal of assessing
the effectiveness of our proposed method.

Large Language Models. We also conduct LLM experi-
ments using OPT-6.7B [79] and Llama2-7B [41], [63] across
four commonsense reasoning benchmarks, namely Piqa [2],
HellaSwag [76], WinoGrande [52], and Arc-e [7]. The LLM’s
accuracy is obtained by averaging the accuracy across the four
datasets mentioned above.

B. Evaluation of Accuracy

1) Accuracy with retraining: For ResNet and BERT mod-
els, we retrain the models on different datasets (Table. I). To
fairly compare the differences between sparsity patterns, we
apply US, TS, RS-V, RS-H, and TBS to the training process
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Fig. 12. The comparison of layer-wise speedup and normalized EDP across different sparsity degrees on ResNet-50 and BERT models.

with the same epochs. The accuracy of the TBS pattern is
0.85%∼1.03% higher than other N:M sparsity patterns, and it
is also very close to the US (only 0.17% gap).

2) Accuracy with one-shot pruning: For the OPT-6.7B and
Llama2-7B models, we evaluate their average accuracy in a
one-shot pruning manner due to the large training overhead.
We apply different patterns on two typical one-shot pruning
methods: Wanda [59] and SparseGPT [12]. Under the same
sparsity degree (50%), TBS can improve the average accuracy
by 2.58% compared with TS (Table. II). Moreover, TBS
narrows the accuracy gap between the SS and US pattern from
2.58%-3.24% down to 0.66%. We need to point out that the
sparsity pattern and pruning criteria are orthogonal to each
other, and using TBS on more efficient training methods [1],
[16], [35], [40] is promising to further improve the accuracy.

C. Evaluation of Hardware Architecture

1) Layer-wise Speedup and EDP: As shown in Fig. 12, we
first evaluate the results under different sparsity degrees on the
typical layers of the ResNet-50 and BERT models. TB-STC
achieves 1.55×, 1.29×, 1.21×, and 1.06× speedup compared
with STC, VEGETA, HighLight, and RM-STC, respectively.
TB-STC improves the EDP by 1.41× compared with the state-
of-the-art structured sparsity work (i.e., HighLight), thanks
to a more efficient hardware architecture design and a more
advanced sparsity pattern. Compared with the unstructured
sparsity work (i.e., RM-STC), TB-STC gains 1.75× EDP
improvement, although their speedup is very similar (only
1.06×). This is because unstructured sparsity introduces non-
negligible hardware overhead, resulting in reduced energy
efficiency. In general, TB-STC outperforms existing works in
computing tasks with a wide range of sparsity degrees.

2) End-to-end Speedup and EDP: As shown in Fig. 13, we
further evaluate the end-to-end results on three representative
models, including ResNet-50, BERT, and OPT-6.7B. Differ-
ent from the layer-wise evaluation, which evaluates different
works at the same sparsity degrees (except for STC, which is
4:8 sparsity). The end-to-end evaluation keeps the same accu-
racy for all works. Therefore, compared with other structured
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sparsity works, TB-STC can utilize the potential benefits of
a higher sparsity degree. In general, TB-STC improves the
speedup by 1.22× and 1.06× and the EDP by 1.62× and
1.92× compared with HighLight and RM-STC.

3) Breakdown of Execution Cycle: As shown in Fig. 14, We
select several typical layers from the 9th layer of the BERT
model to analyze the execution cycle. The format conversion
(implemented on the codec unit) can be hidden within the
entire execution pipeline, thus having minimal impact on the
execution. The results indicate that the overhead of format
conversion accounts for only an average of 3.57% of the
overall execution cycle.

4) Hardware Overhead: Finally, we evaluate the hardware
overhead and power consumption of TB-STC. Table III shows
the detailed area and power breakdown under 1GHz synthe-
sized frequency. Our design has a total hardware area overhead
of 1.47 mm2 and consumes 200.59mW. The DVPE array is
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TABLE III
AREA AND POWER BREAKDOWN OF TB-STC.

Component
Area

(mm2) Breakdown Power
(mW ) Breakdown

DVPE Array 1.43 97.28% 197.71 98.57%
Codec Unit 0.03 2.04% 2.19 1.09%
MBD Unit 0.01 0.68% 0.69 0.34%

Total 1.47 100.00% 200.59 100.00%

the main part of the hardware overhead. Compared to GPU
tensor cores, TB-STC adds a reduction network (total of 0.08
mm2 area including alternate unit) within the DVPE array,
codec units, and MBD units. TB-STC equals 1/108 of the
tensor cores on an NVIDIA A100 GPU [45]. Therefore, TB-
STC with equal proportion introduces 12.96 mm2 additional
area overhead (0.12×108=12.96 mm2), only 1.57% for the
826 mm2 die area of NVIDIA A100 GPU.

D. Evaluation of Sensitivity

1) Effect of Block Size: As shown in Fig. 15(a), we test the
effect of different block sizes on speedup and model accuracy
on the ResNet-50 model. We find that as the block size
increases, the growth of the speedup result tends to become
flat, which is because the granularity of the block size is
sufficient for the hardware and can no longer provide more
gains. However, the accuracy significantly decreases (94.91%
→ 93.82%) as the block size increases. Therefore, we select
a block size of 8 to take into account these factors.

2) Effect of Quantization: Quantization is another common
method for model acceleration, so we further consider the
impact of quantization on TB-STC. As shown in Fig. 15(b),
we adopt the weight 8-bit quantization method for TBS pruned
models (ResNet-50 and BERT). We find that after using
quantization (denoted as “Q+S”), TB-STC can achieve further
acceleration with 1.33× and 1.39×, and the negative impact
on accuracy is almost negligible (accuracy loss 0.13% and
0.41% for ResNet-50 and BERT).

3) Effect of Memory Bandwidth: As shown in Fig. 15(c),
we analyze the normalized speedup effect of TB-STC under
different memory bandwidths. Our analysis results show that
for a memory bandwidth setting of 64GB/s, TB-STC is
still limited by memory access when handling tasks with
higher sparsity. As memory bandwidth increases, TB-STC
can achieve further acceleration. When the bandwidth exceeds
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256GB/s, TB-STC no longer accelerates further because it is
limited by computation.

4) Effect of Sparsity Degree: As shown in Fig. 15(d), we
further evaluate the effect of different sparsity degrees on
the performance of TB-STC. We choose the current SOTA
SGCN [73] as the baseline, effectively accelerating graph
neural networks with high sparsity. For the cases of high
sparsity degrees (e.g., 95%), SGCN can perform better and
outperform TB-STC. This is because SGCN is specifically
optimized for high sparsity, such as maintaining a high ratio of
memory bandwidth (256GB/s) to computing performance and
complex processing for sparse patterns. TB-STC still has better
performance (average 1.32×) for the cases of sparsity degrees
ranging from 30% to 90%, which is also the sparsity range of
most deep learning models (including CNNs and LLMs [77]).

E. Ablation Studies

1) Adaptive Codec Architecture: To verify the validity of
the adaptive codec architecture design, we deploy the TBS
pruned ResNet-50 model on different hardware architectures,
respectively. As shown in Fig. 16(a), we find that even with
the advanced TBS pattern, the performance of other hardware
architectures still has a gap over 1.44× with TB-STC. This is
because other hardware architectures do not efficiently support
the dimensional flexibility existing in TBS, which indicates
that the adaptive codec architecture design of TB-STC is very
important for the contribution to the final performance.

2) I/O-aware Configurable Architecture: We compare two
types of methods, including non-scheduling optimization and
adopting the scheduling strategy supported by the existing
hardware architecture. As shown in Fig. 16(b), compared
with the non-scheduling method, we achieve an average of
1.57× computation utilization improvement due to the full
exploitation of the TBS pattern. In addition, the workload
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balancing designs in existing sparse accelerators [49], [57],
[78] do not adequately address the potential execution effi-
ciency challenges of TBS. For instance, SIGMA [49] utilizes
the bitmap information of sparse matrices and designs a fine-
grained Forwarding Adder Network (FAN) at the element
level. FAN suffers from severe hardware inefficiency because
the design of FAN does not take advantage of the two-
level equalization (inter-block and intra-block) characteristic
of TBS. The normalized EDP of “DVPE+FAN” is on average
1.61× larger than our DVPE.

F. Other Discussion

1) Distribution of Sparsity Pattern: In order to further
illustrate the reason for the improvement in model accuracy,
we analyze the distribution of sparse blocks in the TBS
pruned ResNet-50 model. As shown in Fig. 17, we separately
select three typical layers with low, medium, and high sparsity
degrees, as well as the average distribution (Total) of all layers
in the whole model. We find that the distribution of the sparsity
pattern at the block level is correlated with the sparsity degree.
From the average result, the proportion of the sparse blocks
in the row direction is 18.7%, the proportion of the sparse
blocks in the column direction is 46.0%, and the proportion
of other sparse blocks is 35.3%. This further illustrates that the
existing N:M sparse methods are not enough to only explore
the sparsity in a single dimension.

2) The convergence situations of different sparse patterns
during training: As shown in Fig. 18, we train the ResNet-50
and BERT models using three methods, namely dense training,
US training, and TBS training, respectively. The ResNet-50
model is retrained on the Cifar-10 dataset, and BERT is further
trained based on the pre-trained model on the mrpc dataset.
We also mark the sparsity variation of TBS training in Fig. 18.
Although TBS training requires more training time than dense
training, but it can still achieve almost the same loss. In
addition, since TB-STC can accelerate part of TBS training,
the training time for TBS is shorter than that of the US. This is
because the search space of the US is larger and thus requires
more training overhead.

VIII. RELATED WORKS

A. Deep Learning Acceleration

Most work exploits the sparsity of attention by pre-
computing. For example, SpAtten [68] approximates sparse
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attention matrices by low-precision data. DOTA [51] uses
low-rank methods to detect connection relationships between
inputs at runtime. CTA [69] and ELSA [18] approximate
calculation using hashing, but this approximation method may
hurt the accuracy in high-sparsity cases. There are also some
works to reduce the computational overhead of LLM by
quantization. For example, Mokey [74] and Olive [15] address
the problem of outliers caused by quantization through pre-
processing and hardware design.

B. GPU Kernel of SpMM
Shfl-BW [23] and nmSPARSE [36] attach new pruning

algorithms to restrict the sparse patterns and utilize Tensor
Core to accelerate SpMM kernel and DNNs with a relatively
small accuracy loss. CuSPARSELt [44] leverages the Sparse
Tensor Core in NVIDIA Ampere architecture [6], [42], but
only supports 2:4 weight sparsity which restricts the flexibility
for SpMM. cuSPARSE [48] provided by Nvidia has different
algorithms of SpMM and SDDM implementation. ASpT [22]
devises an adaptive tiling strategy, which individually pro-
cesses dense tiling blocks and sparse tiling blocks, to enhance
SpMM and SDDMM kernel performance.

IX. CONCLUSION

In this paper, we propose TB-STC, a Transposable Block-
wise Structured Sparse Tensor Core that is the first to explore
N:M sparsity in both reduction and independent dimensions.
First, we propose a novel TBS pattern with an efficient end-
to-end sparse training method. Furthermore, TB-STC intro-
duces an adaptive codec architecture for on-the-fly storage
format conversion with a higher bandwidth utilization (1.47×),
and implements an I/O-aware configurable architecture for
sparsity-aware scheduling with a better computational utiliza-
tion (1.57×). Compared with existing work, TB-STC improves
the Energy-Delay Product (EDP) by an average of 3.82×
across different sparse workloads, and offers an enhanced
accuracy-EDP Pareto frontier for various DL models.
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