
IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025 341

DSTC: Dual-Side Sparse Tensor Core for DNNs
Acceleration on Modern GPU Architectures

Chen Zhang , Yang Wang , Zhiqiang Xie , Cong Guo , Yunxin Liu , Senior Member, IEEE,
Jingwen Leng , Member, IEEE, Zhigang Ji , Yuan Xie , and Ru Huang

Abstract—Leveraging sparsity in deep neural network (DNN)
models holds significant promise for accelerating model inference.
However, current GPUs can only harness sparsity in model
weights, leaving activations unutilized due to their dynamic and
unpredictable nature, which poses a considerable challenge for
exploitation. In our research, we introduce a novel architectural
approach aimed at effectively leveraging dual-side sparsity, en-
compassing both weight and activation sparsity. Our methodology
involves a systematic examination of previous sparsity-related
architectures, and culminating in the proposal of an uncharted
paradigm that combines outer-product computation primitive
and bitmap-based encoding format. Our approach showcases
feasibility through minimal modifications to existing production-
scale inner-product-based Tensor Cores. We introduce a set of
innovative ISA extensions and carefully co-design matrix-matrix
multiplication and convolution algorithms, the two predomi-
nant computation patterns in contemporary DNN models, to
exploit our novel dual-side sparse Tensor Core. Our evaluation
demonstrates the efficacy of our design, unlocking the full
potential of dual-side DNN sparsity and delivering performance
enhancements of up to an order of magnitude while incurring
only modest hardware overhead.

Index Terms—Neural networks, graphics processing units,
general sparse matrix-matrix multiplication, sparse convolution,
model pruning.

I. INTRODUCTION

THE widespread deployment of deep learning has spurred
the need to accommodate billions of daily inference

Received 2 January 2024; accepted 14 August 2024. Date of publication
8 October 2024; date of current version 20 January 2025. This work was
supported in part by the National Natural Science Foundation of China
under Grant 62032001, Grant 62072297, and Grant 62222210, in part by
the 111 Project (B18001), and in part by the Research Grants Council of
HKSAR under Grant 16213824. Recommended for acceptance by R. Sriram.
(Corresponding author: Chen Zhang.)

Chen Zhang, Cong Guo, and Zhigang Ji are with Shanghai Jiao Tong
University, Shanghai 200240, China (e-mail: chenzhang.sjtu@sjtu.edu.cn;
guocong@sjtu.edu.cn; zhigangji@sjtu.edu.cn).

Yang Wang is with Microsoft Research, Beijing 100080, China (e-mail:
yangwang5@microsoft.com).

Zhiqiang Xie is with Stanford University, Stanford, CA 94305 USA (e-mail:
xiezhq@cs.stanford.edu).

Yunxin Liu is with Tsinghua University, Beijing 100084, China (e-mail:
liuyunxin@air.tsinghua.edu.cn).

Jingwen Leng is with Shanghai Jiao Tong University, Shanghai 200240,
China, and also with Shanghai Qi Zhi Institute, Shanghai 2719, China
(e-mail: leng-jw@sjtu.edu.cn).

Yuan Xie is with Hong Kong University of Science and Technology, Clear
Water Bay, Hong Kong (e-mail: yuanxie@ust.hk).

Ru Huang is with Peking University, Beijing 100871, China (e-mail:
ruhuang@pku.edu.cn).

Digital Object Identifier 10.1109/TC.2024.3475814

queries in data centers [12]. Many AI applications are subject to
stringent service level agreements, demanding high-scale, low-
latency, and energy-efficient model execution. Consequently,
model compression and sparsification have assumed paramount
importance as optimization strategies aimed at reducing
parameters, minimizing arithmetic operations, and enhancing
computational and energy efficiency. These optimizations span
various hardware platforms, including ASICs [8], [15], [29],
[42], GPUs [10], [40], and FPGAs [5], [21].

To harness the potential for accelerated sparse neural net-
works, GPU vendors have introduced architectural support.
Notably, the introduction of the sparse Tensor Core [22] is a
novel approach to exploit weight sparsity within DNN models.
The latest NVIDIA Ampere and Hopper architecture [24], [25]
introduces a redesigned sparse Tensor Core with a fixed 50%
weight pruning target, achieving improved accuracy and per-
formance trade-offs [5], [40].

In addition to weight sparsity, DNN models also exhibit
another form of sparsity referred to as activation sparsity, intro-
duced by activation functions [1]. Activation sparsity is preva-
lent in activation feature maps used in both computer vision
[4] and natural language processing [7] tasks. Numerous prior
works have reported high activation sparsity levels, ranging
from 50% to 98% [29]. However, the current sparse Tensor Core
primarily focuses on weight sparsity and does not effectively
leverage activation sparsity. Effectively harnessing activation
sparsity remains an open and challenging research problem due
to its dynamic nature, which varies with input and cannot be
pre-determined or controlled through pruning methods.

While previous efforts have addressed dual-side sparsity
in ASIC designs, these solutions are not directly applicable
to GPUs. Given the broad utility of GPUs, it is imperative
to support both sparse general matrix-matrix multiplication
(SpGEMM) and sparse convolution (SpCONV). These two
kernels are pivotal to contemporary DNN models, spanning
convolutional neural networks (CNNs) [14] and transformer-
based models [38]. However, current ASIC designs primarily
focus on either SpGEMM [28], [35], [42] or SpCONV [8], [15],
[29]. In this study, our objective is to accelerate both dual-side
SpCONV and SpGEMM on the Tensor Core architecture.

The primary challenge in enabling dual-side SpCONV and
SpGEMM on Tensor Cores lies in handling the unpredictable
and randomly distributed non-zero elements within the input
tensors. The dot product unit, the fundamental computational
unit in Tensor Core hardware, is responsible for conducting

0018-9340 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2762-2726
https://orcid.org/0000-0001-7322-4062
https://orcid.org/0000-0002-0214-6439
https://orcid.org/0000-0002-4479-5525
https://orcid.org/0000-0001-7352-8955
https://orcid.org/0000-0002-5660-5493
https://orcid.org/0000-0003-1138-804X
https://orcid.org/0000-0003-2093-1788
mailto:chenzhang.sjtu@sjtu.edu.cn
mailto:guocong@sjtu.edu.cn
mailto:zhigangji@sjtu.edu.cn
mailto:yangwang5@microsoft.com
mailto:xiezhq@cs.stanford.edu
mailto:liuyunxin@air.tsinghua.edu.cn
mailto:leng-jw@sjtu.edu.cn
mailto:yuanxie@ust.hk
mailto:ruhuang@pku.edu.cn

342 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

TABLE I
TECHNICAL DIFFERENCES TO RELATED WORK

Inner-product Outer-product Misc
CSR [15], [43] [28], [29], [42] [35]

Bitmap [8] Our work -

vector-vector inner products. While Sparse Tensor Core [22],
[24] effectively addresses the irregularity of weight sparsity by
implementing a structural pruning scheme, which enforces a
consistent 50% weight sparsity to balance the workload and
exploit parallelism within the dot-product unit. This approach
is not directly applicable to SpGEMM because activation spar-
sity in SpGEMM is input-dependent and cannot be predeter-
mined through pruning techniques. In contrast, previous ASIC
designs have taken two distinct approaches to leverage dual-
side sparsity, as summarized in Table I. SparTen and Extensor
[8], [15], for instance, accelerate inner-product computations
by designing specialized hardware for the inner join process,
which identifies non-zero elements by matching positions in
two sparse vectors and accessing those elements. However, this
process’s computational complexity can be as high as O(n2)
(where n represents the vector length of the inner join), resulting
in substantial overhead, including complex prefix sum hardware
and explicit barriers. For example, SpArch [42] uses an array
with 16 floating point multipliers for SpGEMM, and requires
specialized Merge Tree and matrix read/write hardware, which
occupies the 98.4% die area (≈ 28mm2 @ 40nm). If we were
to scale the design to 110592 FP multipliers in A100 [24],
the estimated area cost would be prohibitively expensive (i.e.,
193536 mm2). Conversely, other efforts such as OuterSPACE
[28] and SpArch [42] focus on accelerating SpGEMM with
an outer-product approach but do not accommodate SpCONV
efficiently, leading to significant performance overhead when
directly converting SpCONV to SpGEMM. Furthermore, their
target matrix densities, ranging from 6× 10−3 to 5× 10−5, be-
come inefficient for mainstream Deep Neural Network (DNN)
models, which typically fall within the density range of 5×
10−1 to 1× 10−2. Similarly, SCNN [29] primarily considers
SpCONV but lacks support for SpGEMM.

It’s also challenging to accelerate SpCONV. GPUs usually
transform a CONV operator into a GEMM operator via the
im2col method. Sparse Tensor Core [22], [24], [43] utilizes
weight sparsity but maintains dense input, requiring only dense
im2col. However, exploiting dual-side sparsity demands sparse
im2col for convolution, resulting in irregular memory access
patterns. Moreover, vendor-supplied DNN acceleration library
cuDNN [6] optimizes implicit im2col to fuse address generation
into matrix multiplication, typically offering the best perfor-
mance. Yet, applying implicit im2col to sparse input tensors
proves notably more challenging due to randomly distributed
non-zero elements. In our findings, a naive implementation of
implicit sparse im2col can be 10× to 100× slower than its dense
counterpart.

To address these challenges, we conducted a thorough analy-
sis of the computation patterns for sparse im2col and SpGEMM
while exploring various approaches. Our investigation led us to

conclude that a bitmap-based encoding format is well-suited
for efficient sparse im2col acceleration, while outer-product
methods are highly effective for capitalizing on SpGEMM’s
potential with Tensor Core. Consequently, we introduced a
bitmap-based sparse im2col algorithm for SpCONV and an
outer-product-based dual-side sparse Tensor Core architecture
for SpGEMM. Furthermore, we proposed an outer-product-
friendly sparse im2col method and a bitmap-based outer-
product SpGEMM algorithm to enhance the synergy between
these techniques. Through these innovations, we achieved an
efficient design for implicit sparse im2col in SpCONV acceler-
ation. Our experiments, conducted on Accel-Sim with the A100
architecture, showcased remarkable acceleration for both Sp-
CONV and SpGEMM on the proposed dual-side sparse Tensor
Core architecture, delivering up to a tenfold speedup compared
to state-of-the-art baselines while imposing minimal hardware
overhead.

The key technical contributions of this work are as follows:
• We propose a novel method that combines outer product

and bitmap encoding to accelerate SpGEMM (Section III)
and SpCONV (Section IV). Building upon the bitmap en-
coding, we introduce a novel methodology known as TIA.
TIA leverages the inherent shift-invariant characteristics
of the sparsity pattern within the OTC’s output to effec-
tively mitigate irregularities in the sparse accumulation
process, a unique challenge posed by the outer-product
operation.

• We demonstrate the compatibility of our method with ex-
isting GPU architectures through a targeted set of mod-
ifications that enable the use of dual-side sparsity with
Tensor Cores. The design accommodates a range of data
types and tensor shape configurations, catering to the var-
ied precision demands of AI computations. Moreover, we
introduce instruction set extensions that enhance our ca-
pability to exploit established high-performance libraries,
which are further discussed in Section V.

• Through comprehensive evaluations, our dual-side sparse
Tensor Core achieves remarkable speedup improvements,
with performance gains of 1.25-7.49× for SpCONV and
2.63-8.45× for SpGEMM compared to state-of-the-art
methods. Remarkably, these enhancements come with a
minimal 1.56% area overhead, as detailed in Section VI.

II. BACKGROUND AND RELATED WORK

A. Opportunities of Sparsity in DNNs

Weight sparsity has garnered extensive attention across di-
verse domains, including computer vision and natural language
processing tasks [9], [39]. These studies have consistently
showcased the achievement of high sparsity levels through var-
ious pruning techniques. While reducing the number of weight
parameters can result in storage savings, it often falls short
of delivering substantial acceleration in inference due to frag-
mented and irregular patterns [9], [20]. Some researchers have
proposed pruning methods optimized for hardware implemen-
tations, leading to practical gains in speedup [43]. Notably,
NVIDIA’s latest Ampere GPU introduces Sparse Tensor Cores,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DSTC: DUAL-SIDE SPARSE TENSOR CORE FOR DNNS ACCELERATION ON MODERN GPU ARCHITECTURES 343

Fig. 1. The im2col-based transformation of CONV to GEMM.

embracing fine-grained structural pruning [5], [22], [24], mark-
ing a significant milestone in GPU design.

Activation sparsity naturally occurs in CNN and transformer
layers, followed by activation functions [4]. Unlike weight spar-
sity, activation sparsity dynamically changes with input data
and is highly unstructured. Previous works [4], [29] demon-
strate that activation sparsity can be as high as 45% to 98%.
Some researchers [32] accelerate activation sparsity on GPUs
by adding blocked masks, but it requires external knowledge
and is not generic. However, to the best of our knowledge,
no previous work has demonstrated meaningful speedup by
exploiting activation sparsity on GPU.

B. Computation Kernels

Deep neural networks consist of multiple interconnected lay-
ers, encompassing both linear and non-linear functions. Matrix
multiplication and convolution operations stand out as the pri-
mary computational kernels within these networks, accounting
for a substantial proportion of both the model’s parameters and
computational workloads [41].

Matrix multiplication (GEMM) is the key computational
kernel in NLP models, like RNNs [17] and transformers [7],
[38]. Dense GEMM is one of the fundamental computation
primitives provided by GPU, which has been under continu-
ous optimization. Especially, Tensor Core, as the specialized
hardware, has recently been deployed in GPU to boost GEMM
performance by an order of magnitude. Convolution plays a
vital role in CNNs [14], handling feature extraction and spatial
filtering in images or feature maps. It dominates computational
workloads in CNNs, exceeding 90% [41].

To leverage tensor core’s matrix-multiply capabilities, state-
of-the-art DNN acceleration libraries like cuDNN often trans-
form convolution via the im2col function, which restructures
input feature maps into lowered feature maps, aligning each
row with a 2D sliding window in the input. Im2col on weight
parameters straightforwardly flattens K ×K × C kernels.
Weight-sparse architecture treats im2col as “dense im2col,”
but dual-side sparse architecture faces the challenge of “sparse
im2col”, which has not been fully discussed in previous work.

The naïve approach, called explicit im2col, separates im2col
and GEMM operations but increases global memory usage
(KxK times) due to overlapped sliding window data duplication.
Modern DNN libraries, like cuDNN, opt for “implicit im2col”
for better input data utilization. This method retains the original
feature map layout in global memory and employs an address

Fig. 2. Our proposed bitmap-based outer-product SpGEMM.

conversion scheme for on-chip cache-based im2col. By avoid-
ing physical data duplication in global memory, implicit im2col
is a widely adopted state-of-the-art technique for accelerating
convolution with GEMM operators, addressing the memory
inefficiencies of explicit im2col.

III. BITMAP-BASED SPGEMM

We propose an outer-product-based algorithm to accelerate
SpGEMM using the bitmap-based sparse encoding format.

A. Overview

To harness the advantages of dual-side sparsity, we introduce
an efficient SpGEMM algorithm based on the outer-product
approach. A basic step in this method involves computing
the cross-product between a column of the matrix A and a
row of the matrix B, resulting in a partial matrix denoted as
〈M,N〉= 〈M, 1〉 × 〈1, N〉. This process is illustrated as D13
in Fig. 2(a). To derive the final output, these partial results must
be accumulated in conjunction with the bias matrix C.

Our approach achieves efficient outer-product computations
by employing a bitmap representation, as depicted in Fig. 2(b).
Each input matrix is encoded using a two-tuple representation
comprising a bitmap (e.g., Ab) and a collection of non-zero
values (e.g., Av). In the bitmap, ‘1’s indicate the positions of
non-zero values, while ’0’s correspond to zeros. To facilitate the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

344 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

Fig. 3. (a) 4×4×4 matrix multiplication primitive used in inner-product-
based Tensor Core [27]; (b) A sparse inner-product unit in A100 [22], [24];
(c) Dual-side sparsity unit based on inner-product.

outer-product operation, matrix Av is encoded in column-major
order, while Bv is encoded in row-major order.

The proposed SpGEMM algorithm contains three funda-
mental operations on the bitmap-encoded matrices, denoted
as multiply-value, TIA-bitmap, and merge, as illustrated in
Fig. 2(c). The multiply-value operation calculates the cross-
product (e.g., D1v) for each vector-vector pair of Av and Bv .
This outer-product approach inherently eliminates the need for
an explicit inner-join process, resulting in a more regular mul-
tiplication process. The TIA-bitmap operation determines the
index addresses (e.g., D1b) of the sparse non-zero elements of
D. Lastly, the merge operation combines values (e.g., D1v) and
indexes (e.g., D1b) to accumulate across multiple iterations,
transitioning from E1 to E3 and so on. Despite the irregular and
sparse nature of the resulting partial matrices, the choice to han-
dle single-side irregular accumulation proves advantageous, as
it offers computational efficiency compared to addressing dual-
side sparse multiplication. It’s important to note that sorting
the irregular pattern for output sparsity incurs a complexity of
O(2n), which is significantly smaller than the O(n2) complex-
ity associated with addressing dual-side irregularity in sparse
inner product.

In the subsequent section, we provide a detailed analysis of
the challenges encountered when accelerating SpGEMM using
inner-product-based Tensor Cores, and introduce a SpGEMM
algorithm tailored for outer-product Tensor Cores.

B. SpGEMM in a Warp

1) Problems of Inner-Product Tensor Core: In the A100
architecture [24], each Streaming Multiprocessor (SM) is
equipped with four tensor cores. These tensor cores are indi-
vidually managed by distinct warps and have the capability to
perform an 8× 4× 8 dense matrix multiplication. The core
computational unit within a tensor core comprises an 8-element
parallel vector-vector dot product unit, responsible for carrying
out the multiplication and accumulation of a row from matrix
A and a column from matrix B. To illustrate this process more
clearly, we have provided a simplified 4× 4× 4 depiction in
Fig. 3(a). In the context of single-sided sparse matrix multipli-
cation, the dot product operation requires precise selection and
access to non-zero elements situated at corresponding positions
within the dense vector.

Fig. 4. Outer-product matrix multiplication (4× 4× 4 primitive) and basic
unit of a tensor core.

However, the presence of irregularities due to the spar-
sity inherent in sparse models can lead to resource underuti-
lization and, consequently, a detrimental impact on achiev-
able performance. To address this issue, the sparse tensor
core, as outlined in [22], [24], employs a structural pruning
technique, conducting a 2-out-of-4 pruning within each par-
titioned sub-vector. This approach ensures a consistent 50%
weight sparsity, effectively balancing the workload and har-
nessing parallelism within the dot-product unit, as illustrated in
Fig. 3(b).

Nonetheless, this pruning method proves to be inefficient for
dual-sided sparse matrix multiplication. This inefficiency arises
because activation sparsity is input-dependent, and the num-
ber of non-zeros to be jointly matched becomes unpredictable.
This unpredictability makes it challenging to fully exploit dot
product parallelism, as shown in Fig. 3(c). While some prior
ASIC designs [8], [15], [29] have proposed dedicated hardware
solutions to tackle this issue, their methods often involve com-
plex prefix sum hardware, costly shuffling registers, or explicit
barriers. These solutions introduce substantial overheads and
necessitate significant modifications to the Tensor Cores.

2) Outer-Product Tensor Core (OTC): Our design incor-
porates an Outer-Product-Based Tensor Core (OTC), as is ex-
emplified by the 4× 4× 4 primitive shown in Fig. 4. In this
approach, matrix multiplication is executed by aggregating mul-
tiple partial output matrices, such as D, sized M ×N . Each
partial output is computed through a cross-product operation
involving a column-vector (sized M × 1) from matrix A and a
row-vector (sized 1×N) from matrix B. One of the inherent
advantages of the OTC design is its innate ability to avoid the
inner-join process and eliminate irregular sparse matching. This
is achieved because there is no reduction involved between
two operands. Consequently, the computation order can be re-
arranged into a more regular pattern without adversely affecting
the final results. As illustrated in Fig. 5, outer-product-based
solutions facilitate the alignment of all non-zero elements in
each column of matrix A to the upper side and all non-zero
elements in each row of matrix B to the left, forming two dense
vectors. The outer-product multiplication performed on these
condensed inputs results in condensed matrix multiplication.
After this, non-zero elements are concentrated, allowing tensor
cores to execute fewer instructions to complete a matrix mul-
tiplication. Consequently, this approach can lead to significant
speedup compared to the original dense matrix multiplication.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DSTC: DUAL-SIDE SPARSE TENSOR CORE FOR DNNS ACCELERATION ON MODERN GPU ARCHITECTURES 345

Fig. 5. (a) Outer-product with two sparse inputs (M = 32, N = 16,
K = 4); (b) Leveraging dual-side sparsity by condensing the inputs into
shorter but dense vectors.

Fig. 6. Speedup on global matrix.

3) Warp-Level Outer-Product SpGEMM: We introduce
an efficient warp-level SpGEMM approach utilizing Outer-
Product-Based Tensor Cores (OTCs). Fig. 5(b) provides an
illustrative example where our warp-level SpGEMM demon-
strates significant speedup when applied to OTCs with sparse
inputs. The figure illustrates the computation of a 32× 16×K
warp tile using the outer-product methodology.

OTCs perform computations in cycles. For an 8× 8× 1
OTC, it takes 8 steps to complete a full 32× 16× 1 outer-
product or 16 steps for a 32× 32× 1 computation. In scenarios
involving sparse inputs, such as those represented byAv andBv ,
which contain fewer non-zero elements in each column and row,
we can achieve substantial speedup by skipping certain OTC
steps.

In Fig. 5(b), it can be observed that the column vector from
Av contains 19 non-zero elements within 32 elements, while
the row vector from Bv contains 7 non-zero elements within
16 elements. Consequently, 5 out of the 8 OTC steps consist
entirely of zero elements and can be skipped, theoretically
resulting in a speedup of 8

3 = 2.67×. The extent of OTC step
skipping is contingent on the sparsity levels of the input vectors,
which are specified as 〈0%, 25%, 50%, 75%〉 on the Av side and
〈0%, 50%〉 on the Bv side in this particular case. To maintain
OTC’s 8× 8 tile dimension, zero padding is applied to the
inputs when necessary.

Discussion: While the potential for acceleration is often lim-
ited by a predefined set of sparsity ratios, such as 〈0%, 50%〉
for Bv , our approach operates at the global matrix level, tran-

Fig. 7. An example to show the irregular pattern in OTC’s sparse output
matrix.

scending this constraint. In Fig. 6, we provide an illustrative
example where a row within the global matrix exhibits a 37.5%
sparsity. Traditionally, this condition might not result in any
speedup, assuming the sole benefit from 50% sparsity. However,
our method enables us to achieve an approximate 1.3× speedup
by considering warp tiling at the global matrix level. Given
the typical uneven distribution of non-zero values across the
global matrix, specific warps, such as warp 1 and 3, can still
capitalize on the speedup advantages offered by our SpGEMM
approach.

4) Merge: The merge operation plays a crucial role in ac-
cumulating partial results, such as E1, E2, and E3 in Fig. 2(c),
and writing them back to the output buffer of the tensor cores.
However, the accumulation of partial results from the outer
product poses a unique challenge due to its irregular and un-
predictable nature. This irregularity can be attributed to two
key factors. First, the positions of the non-zero elements are
inherently irregular and cannot be pre-determined. Second, the
number of non-zero elements in each input vector, such as A’s
column or B’s row, remains unpredictable.

Fig. 7 provides a detailed visualization of this irregularity.
Consider a warp with dimensions 〈M = 16, N = 16,K = 1〉,
performing matrix multiplication with an OTC sized at 4× 4.
It takes 4 OTC steps to complete the calculation of all non-
zero outputs, with each step generating a 4× 4 square non-zero
matrix. Due to sparsity, the physical locations of these non-zero
elements in the final 16× 16 matrix are distributed irregularly.
In Fig. 7, these irregularly distributed zones are labeled as zones
0 to 3, and the alignment position indicates the location of the
last bit, representing the boundary of each OTC output tile.

Determining the alignment position is challenging because
it must match the throughput of OTC computation. Addresses
for the accumulation data in matrix D buffer must be pre-
pared before conducting the accumulation process. To address
this challenge, we introduce a dedicated hardware unit called
the Tile Index Aligner (TIA) designed to identify alignment
positions in parallel. This architecture incorporates multiple
parallel sorters and parallel barrel shifters [11], as depicted in
Fig. 8. The 4-way sorter, which includes a crossbar and leading-
one detectors (LOD), can sort a 4-element vector and generate
condensed addresses in parallel. The 4-to-8 (8-to-16) merger,
built on barrel shifters, concatenates two vectors into a longer

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

346 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

Fig. 8. (a) Tile index aligner (TIA) unit finds the alignment position for OTC’s output matrix. (b) The 4-way sorter. (c) The 4-to-8 shifter.

Fig. 9. Integration of TIA and accumulation buffer in OTC.

one with no leading zeros. This architecture ensures that the
accumulation buffer has all the necessary addresses for each
OTC output (up to 64× 64) in a timely manner.

To integrate the TIA unit with the OTC for the merge op-
eration, we incorporate it into the output matrix buffer of the
Tensor Cores, as shown in Fig. 9. On one side, the TIA unit
facilitates parallel accumulations that can match the process-
ing throughput of the OTC. For an 8× 8 OTC, we equip
the accumulation buffer with 64-way parallel accumulators.
On the other side, we design a lightweight operand collec-
tor to handle memory access conflicts. Further details re-
garding the hardware design and evaluation can be found in
Sections V and VI.

Discussion: Thanks to the inherent characteristics of the
outer product, the positions of its output matrix elements ex-
hibit a shift-invariant structure. For instance, the sparsity pat-
terns between non-zero rows (and columns) remain exactly the
same, as demonstrated by the sparsity pattern in the product
output shown in Fig. 5(a). Consequently, deriving addresses
to index the non-zero elements can be achieved with linear
complexity, relying on the input vector bitmaps, such as Ab

and Bb in Fig. 2(b). As there are two inputs involved, the
complexity remains in O(2n). Notably, this complexity is sig-
nificantly lower than the O(n2) complexity associated with
addressing the dual-side irregularity in sparse inner product
computations.

C. SpGEMM on the Device

The primary challenge in deploying SpGEMM across the
entire device stems from poor output data reuse. When exe-

Fig. 10. Data-locality aware sparse representation.

Fig. 11. Two-level bitmap encoding format.

cuting large matrix multiplications, the outer products yield a
significant number of partial matrices. In the case of SpGEMM,
where non-zero elements are distributed randomly across these
partial matrices, it results in a vast addressing space. Often, this
addressing space surpasses the local buffer capacity of a warp,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DSTC: DUAL-SIDE SPARSE TENSOR CORE FOR DNNS ACCELERATION ON MODERN GPU ARCHITECTURES 347

Fig. 12. Outer product friendly im2col on dense matrix.

resulting in fragmented global memory accesses, as depicted in
Fig. 10(a).

To address this issue, we propose a hierarchical bitmap en-
coding format tailored to align with the GPU’s tiling scheme for
SpGEMM, as illustrated in Fig. 10(b). This two-level bitmap
encoding format consists of three distinct tuples, visualized in
Fig. 11. The first-level bitmap encodes individual partitioned
matrix tiles. Within this element-bitmap, each ‘1’or ‘0’ signifies
elemental non-zeros or zeros within the warp tile. Importantly,
this element-bitmap demonstrates remarkable efficiency be-
cause it confines the positions of non-zero elements within the
output partial matrix to this tile. Consequently, these elements
can be accommodated in the Tensor Core’s high-speed local
buffer, eliminating the need for external memory access. The
second-level bitmap, known as the warp-bitmap, employs ‘1’
or ‘0’ to denote the entire tile. ‘0’s indicate an empty tile, while
‘1’s indicate a non-empty one. Warps corresponding to ‘0’warp-
bits can be skipped, signifying that either of the two input tiles
contains only zeros.

IV. DUAL-SIDE SPARSE CONVOLUTION

GPUs typically process dense convolution by converting it
into a GEMM operation using the im2col function. The main
role of im2col is to restructure the data layout of input feature
maps, making them suitable for GEMM processing. However,
an inadequately designed im2col can negatively impact the
efficiency of data reuse in matrix multiplication. To mitigate
the space and time overheads associated with traditional im2col
operations, we have developed a novel “implicit” sparse im2col
algorithm. This innovative method effectively reorganizes data
within registers, thereby bypassing the need for explicit im2col
processes, yet still preserving the advantages of optimized data
arrangement.

A. Outer-Product Friendly Im2col

In Fig. 12(a), we present a visual representation of the im2col
operation applied to a 3× 6 feature map with a 3× 3 convo-
lution kernel. Im2col essentially reorganizes all the elements
within the sliding 3× 3 window into a single row within the
“lowered” feature map. This process aligns seamlessly with

Fig. 13. The im2col on a bitmap-encoded feature map.

inner-product operations because, at each step, one row corre-
sponds to the computation involving multiplication and accu-
mulation in inner-products.

On the other hand, for outer-product operations, a column of
data is required at each step, a functionality that im2col isn’t
inherently designed to provide from the fully “lowered” fea-
ture map. Consequently, we introduce an outer-product-friendly
im2col method, as illustrated in Fig. 12(b). In this arrangement,
the first three columns, for example, correspond to data from
the first row of the original feature map. These three columns
share common data elements among themselves. By employing
a zig-zag pattern to scan the feature map with a 1×4 window, we
construct a column-major “lowered” feature map, which serves
as the input for GEMM operations.

B. Bitmap-Based Sparse Im2col

Similar to dense implicit im2col, our sparse implicit im2col
preserves the bitmap-encoded sparse feature maps in global
memory while reorganizing the data layout in registers. Matrix
B is essentially a bitmap-encoded representation of the flattened
sparse weight matrix.

Bitmap encoding proves to be highly efficient for sparse
im2col operations because it inherits the structural information
from a dense matrix. Consequently, a bitmap-based encoding
format can be leveraged to perform im2col operations on the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

348 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

Fig. 14. Our modification to the Tensor Core includes the accumulation buffer in (b) and the replacement of EEDP Unit (c) with EEOP (d). The thread-group
level inner-product (e) is replaced with outer-product (f).

bitmap itself, employing a technique akin to dense im2col. Sub-
sequently, we employ this lowered bitmap as a mask to retrieve
the corresponding non-zero values. For a detailed illustration of
our approach, refer to Fig. 13. In this example, we take a 3× 6
feature map convoluted by a 3× 3 kernel, resulting in a 4× 9
lowered feature map as shown in Fig. 13(a).
S0 Initially, obtain the original feature map in bitmap encod-

ing.
S1 Take the first bitmap row and corresponding non-zeros.
S2 For the first column, employ a mask on the bitmap row. For

others, perform a leftward bit shift, pop out the leftmost bit.
S3 Accumulate the shifted-out bits. Use it as the address offset

for accessing the non-zero values.
S4 Apply population count to determine the number of non-

zeros within the mask. Output the value vector.
Our approach is efficient for two reasons. Firstly, all neces-

sary operations are of low cost and can be executed in register
files. Secondly, the resulting data is already in a condensed
format, enabling direct integration into outer-product SpGEMM
via register reads.

V. OUTER PRODUCT SPARSE TENSOR CORE

In this section, we introduce the micro-architecture exten-
sions to support our bitmap-based SpGEMM and SpCONV.

A. Outer-Product Tensor Core (OTC)

We modify Tensor Core hardware from inner-product to
outer-product for dense matrix multiplication because it is a
pre-requisite for our SpGEMM algorithm.

1) Hardware Modification: Tensor Cores, specialized hard-
ware for matrix multiplication, have been integrated into
NVIDIA’s GPGPU architecture since the Volta era [27], sig-
nificantly boosting the acceleration of machine learning tasks.
Subsequent architectural iterations in Ampere and Hopper [24],
[25] have continued to enhance their performance. Fig. 14(a)
provides an overview of a Sub-Core within Ampere’s streaming
processor (SM). Each Tensor Core can accomplish a 8× 4×
8 dense matrix multiplication within a single cycle [31]. In

the A100 GPU, a total of 432 Tensor Cores are thoughtfully
distributed across 108 SMs, with each Sub-Core housing one
Tensor Core and each SM containing 4 Sub-Cores. This con-
figuration results in an impressive peak performance of 312
TFLOPS, operating at a clock frequency of 1410 MHz.

Fig. 14 delves into the detailed architecture of the Tensor
Core within a Sub-Core. Each Tensor Core boasts 32 inner-
product units, with each unit capable of executing an eight-
element dot-product (EEDP). This arrangement translates to a
total computing power of 256 multiply-accumulate operations
per cycle within a single Tensor Core. Fig. 14(c) illustrates the
EEDP structure, which concurrently multiplies and accumu-
lates two eight-element vectors from matrices A and B. These
32 EEDPs are organized into four ‘Octets,’ with each Octet
responsible for performing an 8× 1× 8 matrix multiplication.
The four Octets collaboratively execute an 8× 4× 8 matrix
multiplication, as exemplified in Fig. 14(e). Within a warp
comprising 32 threads, data movement between register files
and the memory hierarchy is efficiently managed.

We modify the above-mentioned inner-product Tensor Core
to fit for dense outer-product’s computation. In Fig. 14(d), we
illustrate the modifications we made to the EEDP hardware. Our
adaptation, known as the eight-element outer product (EEOP),
operates by multiplying one element from A with eight ele-
ments from B in parallel and then accumulates the partial results
using adders. Consequently, a group of eight EEOPs collabo-
ratively executes an 8× 8 outer-product operation, as demon-
strated in Fig. 14(f). Similar to the previously described inner-
product Tensor Core, when combined in sets of four Octets,
they effectively perform an 8× 8× 4 matrix multiplication.

2) ISA Extensions for Dense Outer Product: Each
tensor core performs a 8× 4× 8 dense matrix multiplica-
tion, constituting a machine-level HMMA instruction, either
HMMA.16816 or HMMA.1688. This instruction computes an
output block of dimensions 16× 8 by employing a 16× 16
(or 16× 8) tile from matrix A and a 16× 8 (or 8× 8) tile
from matrix B, as exemplified in Fig. 15(a). To compute an
8× 4× 16 tile, two sets of HMMA instructions are employed.
At the warp level, CUDA provides a WMMA API that leverages
these HMMA instructions to perform a larger 16× 16× 16
matrix operation in 16 cycles [25].

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DSTC: DUAL-SIDE SPARSE TENSOR CORE FOR DNNS ACCELERATION ON MODERN GPU ARCHITECTURES 349

Fig. 15. The original HMMA instruction computes a 16× 8× 16 matrix
multiplication in four steps. We define OHMMA (outer-product HMMA)
operation that computes the same tile with 2 steps and 4 sets of HMMA.884
micro-instructions.

Fig. 16. Extended OHMMA/BITIA instructions.

Fig. 17. Our SpWMMA API.

Fig. 15(b) illustrates our OTC interface. Each OTC engages
in an 8× 8× 4 dense matrix multiplication through a vector-
vector outer product approach. We have defined four sets of
Outer-Product HMMA (OHMMA) instructions to complete a
single 8× 8× 16 matrix multiplication. In total, an OTC re-
quires 8 cycles to execute an OHMMA.16816 instruction. Each
cycle processes four pairs of 8× 1 tiles from Av and 1× 8 tiles
from Bv as input.

The Tile Index Aligner (TIA) plays a pivotal role in our
bitmap-based SpGEMM. It is responsible for deriving aligned
indexes for the accumulation process of each HMMA.884 in-
struction, as depicted in Fig. 9. We introduce a new instruction
called BITIA, which takes the bitmap of the input matrix as
input and generates aligned indexes for HMMA outputs. Addi-
tionally, it generates prediction bits that guide the execution of
the OTC in sparse mode. Given that the warp tile size can reach
〈m= 32, n= 32〉, we utilize 8 bits to store each index value.
Consequently, four vector registers are employed to store the
TIA output for a 32× 16 FP16 matrix’s bitmap, and two vector
registers suffice for a 16× 16 FP16 matrix’s bitmap. OHMMA
and BITIA instructions are defined in Fig. 16.

Fig. 18. SpWMMA complied to machine-level instructions.

Fig. 19. The proposed SpWMMA includes 8 OHMMA.884 micro-
instructions in dense mode, which is skipped on the sparse mode.

B. Dual-Side Sparse Tensor Core

We introduce two adaptations aimed at achieving speedup
while leveraging the hardware and instruction extensions men-
tioned above. On the software front, we introduce SpWMMA,
a warp-level API for dual-side SpGEMM that exploits the spar-
sity inherent in matrices A and B by dynamically skipping
OHMMA instructions. On the hardware side, we propose the
integration of an accumulation buffer, which efficiently aggre-
gates partial results generated by the outer-product units.

1) Warp-Level Interface: We define a SpWMMA API that
works on a warp-level matrix tile in Fig. 17. A SpWMMA
breaks down into 4 Octets working concurrently. Each Octet
includes 4 sets, and each set includes a 32× 32× 1 outer prod-
uct in Fig. 15. Since the machine-level OHMMA instruction
computes an 8× 8× 1 outer product within a warp. And each
SpWMMA is compiled to 8 OHMMA instructions, as shown
in Fig. 18.

For sparse inputs, both Av and Bv exhibit a sparse pat-
tern, leading to performance improvement through the strategic
omission of OHMMA instructions using predication opera-
tions. Predication operations, a commonly employed technique
in GPGPU computing, enable the skipping of specific instruc-
tion executions. In our approach, we utilize population count
instructions (POPC), which are widely supported in GPGPU
architectures for counting the number of “1” bits in binary
numbers, to set predication bits. The count of “1” bits in the
bitmaps of Av and Bv serves as an indicator of the number of
element-wise multiplications required in each row/column. As
illustrated in Fig. 19, consider the computation for Set 3 as an
example. We count the bitmaps of Av and Bv to identify that

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

350 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

TABLE II
SUPPORTED DATA TYPE AND WARP SHAPE

A/B C/D OTC shape Warp Shape A/B-sparsity
32-b 32-b m4n4k4 m16n16k16 〈0%, 25%, 50%, 75%〉

32+16-b
32-b m8n4k4 m16n16k16

16+16-b
16-b 16-b m8n8k4 m32n16k16 〈0%, 50%〉 or

16+8-b
16-b m8n8k4 m32n16k16

〈0%, 25%, 50%, 75%〉
16+16-b

8-b 16-b m8n8k4 m32n16k16
8-b 8-b m16n8k4 m32n32k16

Fig. 20. Accum. buffer’s access pattern.

the sparse multiplication necessitates 19 out of 7 multiplications
in each row/column. In our design, each OHHMA instruction
encompasses an 8×8 condensed sparse outer product multipli-
cation. Consequently, we enable OHHMA0/1/2 by configuring
predication bits while bypassing OHHMA3/4/5/6/7 for Set 3.

To meet the diverse precision requirements of modern AI
applications, GPGPU architectures [24], [25], [27] have evolved
to support multiple data types. This diversity in data type bit-
length presents challenges for micro-architecture design due
to the static nature of buffer sizes, such as cache line and
vector register lengths, as well as the corresponding data paths
required for data movement. To tackle these challenges, we have
delineated a variety of warp-level sparse wmma instructions
that accommodate an array of tensor shapes, thereby supporting
major data types including FP-32/16/8, TF-32, and Int-32/16/8,
detailed in Table II. These instructions are tailored to optimize
the placement and movement of input and output tensors within
the buffers and data paths of the OTCs.

2) Accumulation Buffer: The accumulation buffer has two
modes, a dense mode, and a sparse mode. In dense mode, the
accumulation buffer configures each read/write port directly
connected to each output from EEOP units. In sparse mode, a
large amount of partial matrix is generated (e.g., 32× 16 FP16
for the warp-tile in SpWMMA). We extend the accumulation
buffer to a multi-bank memory. Since the four Octets are work-
ing concurrently, we design four accumulation buffers private to
each Octet, each with 1 KByte (32× 16× 2Bytes). This setting
also improves data locality and releases the pressure to memory
accesses. After all four Octets finish their computation in the
private buffer, their output matrix will be merged with element-
wise accumulation and written back from OTC to warp register.
Furthermore, the gather-accumulate-scatter method, discussed
in Section III-B4, requires random access to multiple banks. We
design an operand collector to schedule bank reads and writes
to optimize the effective bandwidth.

Fig. 21. Memory access schedule optimization.

Fig. 22. Accumulation buffer design.

a) Dense mode: Fig. 20(a) shows an example of the
EEOPs’outputs memory access to the accumulation buffer port.
For simplicity, we use a 4× 4 example. Since one OHMMA
instruction is issued per cycle, the accumulation buffer uses 16
ports (e.g., the numbers in circles) for each EEOP output (e.g.,
elements in the blue matrix).

b) Sparse mode: Fig. 20(b) provides an illustration of the
memory access pattern within the accumulation buffer during
the execution of SpWMMA Instruction. We consider an 8×
8× 1 warp tile with both input vectors having a 50% sparsity.
Under these conditions, OHMMA continues to generate 16 out-
puts per cycle. However, accumulating these outputs can lead
to numerous bank conflicts since they are distributed randomly
across the partial matrix, as indicated in Fig. 20(b).

To address this challenge, we propose the integration of a
small operand collector into our accumulation buffer, enhanc-
ing memory bandwidth utilization. The operand collector, a
technique utilized in NVIDIA’s GPU microarchitecture, enables
the overlapping of source operand readings from register file
banks among multiple instructions. As depicted in Fig. 21, this
operand collector efficiently combines non-conflicting memory
accesses from various instructions, resulting in a substantial
increase in memory throughput. Fig. 22 provides an overall
design overview of our accumulation buffer, incorporating the
aforementioned operand collector. This design can seamlessly
support both dense and sparse outer-product operations, with
the sparse mode being automatically activated through the Sp-
WMMA API.

VI. EVALUATION

We undertake an extensive set of experiments encompassing
diverse micro-benchmarks and DNN models to comprehen-
sively assess the efficacy of our software and hardware design.
Our investigation delves into four primary aspects: 1) We ex-
amine the effectiveness of bitmap-based im2col in mitigating

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DSTC: DUAL-SIDE SPARSE TENSOR CORE FOR DNNS ACCELERATION ON MODERN GPU ARCHITECTURES 351

TABLE III
DETAILS OF OUR EVALUATED SPARSE DNN MODEL

Models Pruning Scheme Dataset Accuracy
VGG-16

AGP [44]
ImageNet 88.86% (top 5)

ResNet-18 ImageNet 86.46% (top 5)
Mask R-CNN COCO 35.2 (AP)

BERT-base encoder MP [16], [33] SQuAD 83.3 (F1 score)
Llama Wanda [37] WikiText 6.15 (ppl)

the decoding overhead. 2) We gauge the extent to which our
SpGEMM can enhance performance across various sparsity ra-
tios. 3) We measure the acceleration achieved in diverse neural
network layers. 4) We evaluate the extent of hardware overhead
introduced in terms of hardware area. Our evaluation results
demonstrate that our design yields substantial performance im-
provements with minimal hardware overhead.

A. Experimental Setup and Methodology

Simulation Platform We employ Accel-Sim [18], a cycle-
accurate simulator built upon GPGPU-Sim [19]. This simulator
offers a versatile front-end architecture, optimized cache and
shared memory models, and notably enhances simulation preci-
sion compared to its predecessors. In our simulations, we model
an A100 GPU [24]. To accommodate SpWMMA instructions,
we integrate a cycle-accurate tensor core model, which aligns
with our hardware design outlined in Section V. We expand
the simulator’s front-end capabilities to support our instruction
extensions, as depicted in Fig. 19.

Baselines We select CUTLASS [26] and cuDNN [6] for
dense GEMM and Conv operations. CUTLASS is an open-
source GEMM library known for high-performance levels.
cuDNN [6] is a widely utilized vendor-optimized library for
DNNs. In our comparisons for SpGEMM and SpCONV, we
consider two baselines: the vendor-optimized sparse matrix
library cuSparse [23] and Sparse Tensor Core [43] adapted
to A100 with 75% sparsity. To ensure fair comparisons,
our SpGEMM and SpCONV implementations adhere to the
same loop tiling and software computation pipeline as CUT-
LASS [26].

DNN Models and Pruning We evaluate our algorithms
using various types of DNN models, including 1) three widely-
used CNN models: VGG-16 [34], ResNet-18 [14], and Mask
R-CNN [13]; 2) two transformer models: BERT-base [7] en-
coder, a representative and well-known attention-based model;
and a large language model (LLM), Llama [38], developed by
Meta AI. Llama stands out as one of the leading LLM models,
excelling in various NLP benchmarks. Notably, Llama comes
in four versions, each with varying parameters, ranging from 7
billion to 65 billion. In this case, we use Llama-13B version.

We fine-tune and prune the CNN models with Automated
Gradual Pruner (AGP) [44] on Distiller [45]. We use the fine-
pruned BERT-base encoder model [16], [33] on the SQuAD
task. Unlike CNN models, BERT encoder and RNN models
usually have high sparsity on only weights but not feature maps.
We prune Lllam-13B model with Wanda’s methodology on
Wikitext-2 [3] dataset, which investigates 50% weight sparsity

TABLE IV
NORMALIZED IM2COL TIME COMPARISON USING A TYPICAL CONVOLUTION

LAYER FROM RESNET-18 (FEATURE MAP H/W=56, FILTER H/W=3, IN/OUT

CHANNEL=128) UNDER DIFFERENT SPARSITY RATIOS

Sparsity (%) 0 25 50 75 99 99.9
Dense Im2col 1 1 1 1 1 1
CSR Im2col 101.3 67.1 45.2 14.5 4.7 1.2

Bitmap Im2col 8.31 6.87 4.73 2.5 1.5 1.1

patterns, both structured and unstructured, to uncover acceler-
ation opportunities on Sparse Tensor Cores. For the purposes
of demonstrating the advantages of our Outer-Product Tensor
Core, we employed an unstructured pruning technique. Note
that our work does not affect the model accuracy because we do
not propose any new pruning algorithm. Table III summarizes
the sparse model accuracy, which is consistent with previous
pruning works. The detailed layer-wise activation and weight
sparsity ratios are listed in Fig. 24.

B. Performance of Bitmap-Based Im2col

To assess the performance of our bitmap-based im2col, we
conducted a comparative evaluation against both dense im2col
and CSR-encoded im2col. CSR (Compressed Sparse Row) en-
coding is chosen for comparison as it represents one of the
most commonly used sparse matrix encoding techniques. We
implemented these three im2col algorithms using the PyTorch
ATEN library [30] and utilized a typical convolution layer from
ResNet-18 as the basis for comparison. The evaluation involved
measuring the execution times of these algorithms and normal-
izing the results to the dense im2col case. We varied the feature-
map sparsity from 0% to 99.9% and summarized the outcomes
in Table IV.

The findings demonstrate a significant performance advan-
tage of our bitmap-based im2col, particularly when compared
to CSR-encoded im2col across various sparsity levels. Notably,
our approach achieves an order-of-magnitude improvement in
execution time when the sparsity ratio is below 50%. Only
when the sparsity ratio reaches exceptionally high levels, such
as 99.9%, does CSR-encoded im2col manage to attain a roughly
comparable performance level to our bitmap-based im2col. This
performance gap arises because CSR encoding introduces two
additional data-dependent memory reads for each non-zero data
access, while bitmap encoding efficiently compresses non-zero
data offsets into bits, substantially reducing operational inten-
sity in the im2col process.

C. Performance of SpGEMM

We conducted a performance evaluation of our SpGEMM,
comparing it with CUTLASS, cuSparse, and Sparse Tensor
Core [43]. Our assessment focused on the execution time of
multiplying matrices sized 4096× 4090× 4090 across various
sparsity ratios. For cuSparse, we maintained a 99% sparsity in
matrix B and varied matrix A’s sparsity from 90% to 99.9%, not-
ing that cuSparse exhibited significant slowdowns when matrix

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

Fig. 23. Performance comparison of SpGEMM on the CUTLASS baseline.
cuSparse only outperforms the baseline when the sparsity is large(>95%).
CSR-based Sparse Tensor Core cannot fully exploit dual-side sparsity. Our
SpGEMM achieves a much higher speedup and also supports a very wide
range of sparsity of matrices A and B.

A’s sparsity was below 90%. The results, depicted in Fig. 23,
led to some key insights.

Firstly, cuSparse appears unsuitable for accelerating sparse
neural networks. Despite matrix B’s high sparsity of 99%,
cuSparse only outperformed CUTLASS (the dense case) when
matrix A’s sparsity exceeded 95%, indicating its limited utility
in practical scenarios where extremely high sparsity is uncom-
mon. Secondly, Sparse Tensor Core [43] consistently delivered
around 1.9× speedup over CUTLASS, attributable to its design
focus on a fixed pruning ratio of 75%. However, this approach
fails to capitalize on the potential sparsity in the other matrix,
restricting its acceleration capability.

In contrast, our bitmap-based dual-side SpGEMM effectively
leverages the sparsity in both matrices. For instance, with a 99%
sparsity in matrix B, our approach reached a 12.0× speedup
over CUTLASS, even when matrix A had no sparsity. This
speedup increased dramatically to 29.2× when matrix A’s spar-
sity was 99.9%, markedly outperforming cuSparse by 13.9×.
Moreover, our SpGEMM surpassed CUTLASS even when ma-
trix B’s sparsity was 0, provided matrix A’s sparsity exceeded
approximately 25%. Thus, our SpGEMM achieves significant
acceleration over dense cases across a broad spectrum of spar-
sity scenarios.

D. Performance of Real Neural-Network Inference

We assess the real neural network inference using the five
aforementioned DNN models. For CNN models, we conduct
performance comparisons across five scenarios: 1) Dense Ex-
plicit: dense GEMM (CUTLASS) with explicit im2col. 2)
Dense Implicit: dense GEMM (cuDNN) with implicit im2col.
3) Single Sparse Explicit: Sparse Tensor Core [43] with explicit
im2col. 4) Single Sparse Implicit: our SpCONV method, ex-
ploiting weight sparsity. 5) Dual Sparse GEMM: our dual-side
sparsity method. For the Transformer-base models, which do
not use im2col, we evaluate performance across three cases: 1)
Dense GEMM: dense GEMM on CUTLASS. 2) Single Sparse

GEMM: Sparse Tensor Core [43]. 3) Dual Sparse GEMM: our
dual-side sparsity method.

Fig. 24 shows the layer-wise and full-model speedup of the
five DNNs. We select a set of representative layers for brevity
because the rest layers have the same shape. For CNN models,
we normalize the speedup against the Dense Implicit method,
which outperforms Dense Explicit thanks to optimized im2col
convolution operations. Additionally, Single Sparse Explicit
[43] exhibits improved performance over Dense Explicit by
leveraging weight matrix sparsity, though it doesn’t consistently
outperform Dense Implicit, showing speedup values ranging
from 0.78× to 1.74× (with an average of 1.36×). Our approach,
Single Sparse Implicit, capitalizes on weight matrix sparsity
and bitmap-based implicit im2col, frequently outperforming
Dense Implicit. It achieves an average speedup of 1.92× (rang-
ing from 0.63× to 4.5×). Leveraging dual-sided sparsity and
bitmap-based implicit im2col, our Dual Sparse Implicit method
stands out by achieving a substantial speedup of 1.25× to
7.49× over Dense Implicit. On average, it reaches a speedup
of 4.38×, surpassing Single Sparse Explicit [43] by 2.22×.
Furthermore, Fig. 24 demonstrates that our method closely
approaches the theoretical upper bound in certain CONV layers.
Estimating the upper bound accurately remains challenging
due to non-zero distribution dependencies. Smaller speedups
observed in some layers, such as ResNet-18 layer 4-4, result
from their limited sizes, where performance is constrained by
data movement.

In the context of transformer-based NLP models, we bench-
mark speedup against Dense GEMM. Notably, Single Sparse
GEMM [43] consistently outperforms Dense GEMM but ex-
hibits a modest speedup, ranging from 1.10× to 1.48×, with
an average of 1.3×. However, when applied to BERT models,
our approach demonstrates substantial superiority over Sin-
gle Sparse GEMM, achieving a remarkable speedup ranging
from 3.62× to 8.45×. Our method’s average speedup stands
at 5.1×, which is 4.25× higher than that of Single Sparse
GEMM. This substantial improvement arises because Sparse
Tensor Core [43] primarily accelerates SpGEMM with a rigid
75% sparsity limit. Conversely, our pruned BERT-base encoder
model [33] boasts over 90% weight sparsity, a condition where
our method thrives. Regarding Llama sparse pruning, we fol-
low Wanda [37] 4:8 structured pruning approach for Single
Sparse GEMM, allowing it to leverage A100’s sparse tensor
core primitive. Meanwhile, we’ve implemented unstructured
pruning for Dual Sparse GEMM as our approach imposes little
sparsity pattern constraints. Both methods achieve a 50% spar-
sity rate, but the unstructured pruning, with dual-side sparse
GEMM acceleration, delivers higher model quality, boasting
6.15 vs. 7.40 perplexity (ppl). Recall the example in Fig. 6,
demonstrating that our approach transcends fixed-ratio limits
thanks to our innovative sparse tiling technique. Furthermore,
it is worthwhile to mention that high-end GPUs face significant
memory wall challenges when processing LLMs with low batch
sizes, especially during the context generation stage [38]. As
memory access time becomes the bottleneck, both traditional
and newly proposed Sparse Tensor Cores exhibit similarly sub-
optimal performance. Notably, the bitmap encoding introduced

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DSTC: DUAL-SIDE SPARSE TENSOR CORE FOR DNNS ACCELERATION ON MODERN GPU ARCHITECTURES 353

Fig. 24. Model-inference performance comparison for different layers in the five DNN models. Note that the theoretical speedup is a loose upper bound,
e.g., 100× speedup on 99% sparsity. *For Llama sparse pruning, Wanda [37] proposes three pruning schemes, 2:4 pruning, 4:8 pruning, and 50% unstructured
pruning. We use 4:8 pruning for Single Sparse GEMM, and unstructured pruning on Dual Sparse GEMM. Among them, the unstructured pruning (with DSTC
acceleration) has the best model performance on the perplexity metric (ppl).

TABLE V
AREA AND POWER OVERHEAD ESTIMATION

Module Name
Area Overhead
(mm2, 12 nm)

Power Consum.
(W, 12 nm)

Float Point Adders 0.252 4.72
Tie Index Aligner 0.809 0.22

Accumulation Operand Collector 1.51 0.46
Shared Accumulation Buffer 10.331 1.08

Total overhead on A100 12.902 (1.56%) 6.48 (2.59%)

in this study offers some advantages over traditional methods.
For example, an 8-bit sparse weight, shaped m× n, requires at
least 2× (1/2×m× n) bits for a 2:4 STC encoding [24], but
only 1/8×m× n bits for bitmap encoding, resulting in less
overhead on reading the sparse matrix.

E. Hardware Overhead

Finally, we evaluate the hardware overhead and power con-
sumption of shared buffers and queues using CACTI 7 [2] with
22 nm process technology and scale them to 12 nm [36]. We
estimate Tile Index Aligner, Accumulation Operand Collector
and Float Point Adders overheads and energy consumption in
RTL implementation. As shown in Table V, our design intro-
duces a total hardware overhead of 12.902 mm2, which is 1.56%
of the whole A100 die area of 826 mm2, and it consumes an
additional 6.48 W that is 2.59% of A100’s 250 W TDP.

VII. CONCLUSION

In this paper, we demonstrate the potential for significant
speedup in both SpGEMM and SpCONV operations on GPU
Tensor Cores with minimal hardware extensions. Our approach
hinges on the synergy between the outer product of matrix
multiplication and bitmap-based sparse encoding, enabling the
full utilization of dual-side sparsity to enhance the efficiency

of GEMM and implicit im2col. Importantly, our design is ver-
satile, accommodating a wide range of sparsity ratios, and it
outperforms state-of-the-art baselines by up to one order of
magnitude, all while incurring minimal hardware overhead.
These results pave the way for the next significant performance
leap in future GPUs.

ACKNOWLEDGMENTS

The authors thank the anonymous reviews for their
thoughtful comments and suggestions.

REFERENCES

[1] A. F. Agarap, “Deep learning using rectified linear units (ReLU),” 2018,
arXiv:1803.08375.

[2] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Trans. Archit. Code Optimiz.,
vol. 14, no. 2, pp. 1–25, 2017.

[3] J. Bradbury, S. Merity, C. Xiong, and R. Socher, “Quasi-recurrent neural
networks,” in Proc. Int. Conf. Learn. Representations (ICLR), 2017, pp.
1–11.

[4] S. Cao et al., “SeerNet: Predicting convolutional neural network feature-
map sparsity through low-bit quantization,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 11216–11225.

[5] S. Cao et al., “Efficient and effective sparse lstm on FPGA with bank-
balanced sparsity,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable
Gate Arrays, 2019, pp. 63–72.

[6] S. Chetlur et al., “cuDNN: Efficient primitives for deep learning,” 2014,
arXiv:1410.0759.

[7] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

[8] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar,
“SparTen: A sparse tensor accelerator for convolutional neural net-
works,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchit., 2019,
pp. 151–165.

[9] C. Guo et al., “Accelerating sparse DNN models without hardware-
support via tile-wise sparsity,” in Proc. Int. Conf. High Perform. Com-
put., Netw., Storage Anal., 2020, pp. 1–15.

[10] C. Guo et al., “Balancing efficiency and flexibility for DNN acceleration
via temporal GPU-systolic array integration,” in Proc. Des. Automat.
Conf., 2020, pp. 1–6.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

[11] I. Hashmi and H. M. H. Babu, “An efficient design of a reversible barrel
shifter,” in Proc. 23rd Int. Conf. VLSI Des., Piscataway, NJ, USA: IEEE
Press, 2010, pp. 93–98.

[12] K. Hazelwood et al., “Applied machine learning at Facebook: A datacen-
ter infrastructure perspective,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Piscataway, NJ, USA: IEEE Press, 2018,
pp. 620–629.

[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[15] K. Hegde et al., “ExTensor: An accelerator for sparse tensor algebra,”
in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchit., 2019, pp. 319–
333.

[16] “Huggingface,” Accessed: Jan. 02, 2025. [Online]. Available: https://
github.com/huggingface/block_movement_pruning#fine-pruned-models

[17] N. Kalchbrenner et al., “Efficient neural audio synthesis,” in Proc. Int.
Conf. Mach. Learn., PMLR, 2018, pp. 2410–2419.

[18] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim: an
extensible simulation framework for validated GPU modeling,” in Proc.
ACM/IEEE 47th Annu. Int. Symp. Comput. Archit. (ISCA), Piscataway,
NJ, USA: IEEE Press, 2020, pp. 473–486.

[19] J. Lew et al., “Analyzing machine learning workloads using a detailed
GPU simulator,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.
(ISPASS), Piscataway, NJ, USA: IEEE Press, 2019, pp. 151–152.

[20] X. Liu, Y. Liu, B. Yin, H. Yang, Z. Luan, and D. Qian, “SpAMM:
Optimizing large-scale sparse approximate matrix multiplication on
sunway taihulight,” Frontiers Comput. Sci., vol. 17, no. 4, 2023, Art.
no. 174104.

[21] L. Lu and Y. Liang, “SpWA: An efficient sparse winograd convolutional
neural networks accelerator on FPGAs,” in Proc. 55th ACM/ESDA/IEEE
Des. Automat. Conf. (DAC), Piscataway, NJ, USA: IEEE Press, 2018,
pp. 1–6.

[22] A. Mishra et al., “Accelerating sparse deep neural networks,” pp. 1–14,
2021, arXiv preprint.

[23] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” in Proc. GPU Technol. Conf., 2010, pp. 1–93.

[24] Nvidia, “Nvidia a100 tensor core architecture,” NVIDIA, Tech. Rep.,
2020.

[25] Nvidia, “Nvidia h100 tensor core architecture,” NVIDIA, Tech.Rep.,
2022.

[26] C. Nvidia, “Cutlass library,” NVIDIA Corporation, Santa Clara, Cali-
fornia, vol. 15, no. 27, 2008, Art. no. 31.

[27] T. NVIDIA, “V100 GPU architecture. The world’s most advanced data
center GPU.” Tech. Rep., NVIDIA. 2017, Art. no. 108.

[28] S. Pal et al., “OuterSPACE: An outer product based sparse matrix
multiplication accelerator,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Piscataway, NJ, USA: IEEE Press, 2018,
pp. 724–736.

[29] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” ACM SIGARCH Comput. Archit. News,
vol. 45, no. 2, pp. 27–40, 2017.

[30] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[31] M. A. Raihan, N. Goli, and T. M. Aamodt, “Modeling deep learning
accelerator enabled GPUs,” in Proc. Int. Symp. Perform. Anal. Syst.
Softw. (ISPASS), Piscataway, NJ, USA: IEEE Press, 2019, pp. 79–92.

[32] M. Ren, A. Pokrovsky, B. Yang, and R. Urtasun, “SBNet: Sparse blocks
network for fast inference,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 8711–8720.

[33] V. Sanh, T. Wolf, and A. M. Rush, “Movement pruning: Adaptive
sparsity by fine-tuning,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 20378–20389. [Online]. Available: https://papers.nips.cc/paper/2020/
file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Representa-
tions (ICLR), Y. Bengio and Y. LeCun, Eds., 2015, pp. 1–14.

[35] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “MatRaptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microarchit.
(MICRO), Piscataway, NJ, USA: IEEE Press, 2020, pp. 766–780.

[36] A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction
of cmos device performance from 180 nm to 7 nm,” Integration, vol. 58,
pp. 74–81, 2017.

[37] M. Sun, Z. Liu, A. Bair, and J. Z. Kolter, “A simple and effective pruning
approach for large language models,” 2023, arXiv:2306.11695.

[38] H. Touvron et al., “Llama: Open and efficient foundation language
models,” pp. 1–27, 2023, arXiv2302.13971.

[39] H. Yang, S. Gui, Y. Zhu, and J. Liu, “Automatic neural network compres-
sion by sparsity-quantization joint learning: A constrained optimization-
based approach,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.
(CVPR), 2020, pp. 2178–2188

[40] Z. Yao, S. Cao, W. Xiao, C. Zhang, and L. Nie, “Balanced sparsity for
efficient DNN inference on GPU,” in Proc. AAAI Conf. Artif. Intell.,
vol. 33, 2019, pp. 5676–5683.

[41] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 38, no. 11, pp. 2072–2085, Nov. 2019.

[42] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient
architecture for sparse matrix multiplication,” in Proc. Int. Symp. High
Perform. Comput. Archit. (HPCA), 2020, pp. 261–274.

[43] M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse tensor core: Algorithm and
hardware co-design for vector-wise sparse neural networks on modern
GPUs,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchit., 2019,
pp. 359–371.

[44] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” in Proc. 6th Int. Conf. Learn.
Representations (ICLR), Vancouver, BC, Canada, 2018, pp. 1–10.

[45] N. Zmora, G. Jacob, L. Zlotnik, B. Elharar, and G. Novik, “Neural
network distiller: A Python package for DNN compression research,”
2019, arXiv:1910.12232.

Chen Zhang received the Ph.D. degree in EECS
from Peking University, Beijing, China, in 2017. He
is an Assistant Professor with Shanghai Jiao Tong
University. He served as a Senior Researcher with
Microsoft Research Asia and a GPGPU Architect
with Alibaba. His research interests include com-
puter architectures and heterogeneous computing
for cloud & edge AI systems. He received FPGA
2015 Best Paper Nomination, TCAD 2019 Donald
O. Pederson Best Paper Award, MICRO 2022 Top-
picks Honorable Mention.

Yang Wang received the graduate and Ph.D. de-
grees from the University of Electronic Science
and Technology of China, in 2014 and 2022. He
is a Researcher with Microsoft Research Asia. His
research interests include computer architecture,
efficient neural network inference, and data center
networking.

Zhiqiang Xie is currently working toward the Ph.D.
degree with Stanford University. His research en-
deavors are centered on enhancing the observability
and efficiency of computer systems, with a specific
emphasis on cloud computing and machine learning
systems.

Cong Guo received the B.Sc. degree from Shen-
zhen University, China. He is currently working
toward the Ph.D. degree in computer science with
the Department of Computer Science and Engi-
neering of Shanghai Jiao Tong University, China,
under the supervision of Dr. Jingwen Leng. His re-
search interests include computer architecture, high-
performance computing, and AI accelerator design.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

https://github.com/huggingface/block_movement_pruning#fine-pruned-models
https://github.com/huggingface/block_movement_pruning#fine-pruned-models
https://papers.nips.cc/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://papers.nips.cc/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf

ZHANG et al.: DSTC: DUAL-SIDE SPARSE TENSOR CORE FOR DNNS ACCELERATION ON MODERN GPU ARCHITECTURES 355

Yunxin Liu (Senior Member, IEEE) received the
B.S. degree from Shanghai Jiao Tong University
(SJTU), the M.S. degree from Tsinghua University,
and the Ph.D. degree from University of Science
and Technology of China (USTC). He is a Guoqiang
Professor with the Institute for AI Industry Research
(AIR), Tsinghua University. His research interests
include mobile computing and edge computing. He
received MobiSys 2021 Best Paper Award, SenSys
2018 Best Paper Runner-up Award, MobiCom 2015
Best Demo Award, and PhoneSense 2011 Best

Paper Award.

Jingwen Leng (Member, IEEE) is a Professor with
the Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University. His research re-
search interests include intelligent computer system
design for the artificial intelligence, with the focus
on performance, energy efficiency, and reliability.
His work has received best paper award or nomi-
nation at venues/conferences including IEEE Micro
Top Picks, DAC, and PACT.

Zhigang Ji received the B.Eng. degree in electrical
engineering from Tsinghua University, in 2003, the
M.Eng. degree in microelectronics from Peking
University, in 2006, and the Ph.D. degree in micro-
electronics from Liverpool John Moores University,
in 2010. In 2020, he joined Shanghai Jiaotong
University, where he currently holds the position as
a Professor in Nanoelectronics and the Director of
LEMON Lab. He has authored or co-authored over
200 scientific papers, including IEDM and VLSI.
His research interests include nanoscale CMOS and

non-CMOS devices, DTCO, and emerging technologies for applications such
as hardware security and new-paradigm computing.

Yuan Xie received the B.S. degree in electronic
engineering from Tsinghua University, and the
M.S. and Ph.D. degrees in computer engineering
from Princeton University. Currently, he is a Chair
Professor with the Department of Electronic and
Computer Engineering, Hong Kong University of
Science and Technology. He is a Fellow of ACM,
and a Fellow of AAAS. He has a rich industry
experience with IBM, AMD, and Alibaba Group.
He is a recipient of many awards, including the
NSF CAREER Award (2006), the IEEE Computer

Society Edward J. McCluskey Technical Achievement Award (2021), and the
IEEE CAS Society Industrial Pioneer Award (2023).

Ru Huang received the Ph.D. degree in microelec-
tronics from Peking University, Beijing, China, in
1997. She is a Professor with Peking University.
She is also serving as the President of Southeast
University, Nanjing, China, since 2022. She is an
Elected Academician of the Chinese Academy of
Science, an Elected Member of TWAS Fellow.
Her research interests include nano-scaled CMOS
devices, ultra-low-power new devices, new device
for neuromorphic computing, emerging memory
technology, and device variability/reliability.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on May 20,2025 at 02:43:58 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

