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Abstract—With the explosive growth in the number of
parameters in deep neural networks (DNNs), sparsity-centric
algorithm and hardware designs have become critical for low-
latency AI serving systems. However, the inherent randomness
in pruning methods often leads to fragmented data access and
irregular computation patterns in sparse matrices, resulting
in significantly reduced hardware efficiency. Addressing the
balance between the ‘randomness’ required to maintain model
accuracy and the ‘regularity’ needed for efficient hardware
design is crucial for realizing effective sparse computing in AI.
This paper proposes a Fine-grained Structured Sparsity (FSS)
paradigm. The pruned sparse matrices in this paradigm exhibit
characteristics of ‘local randomness’ and ‘global regularity’.
This dual-feature design allows AI accelerator hardware based
on the FSS paradigm to maintain both high model accuracy
and efficient hardware design. We implemented this novel
accelerator on the Xilinx Alveo U280 and validated our concept
across three different AI models, including CNN, RNN, and
LLM, demonstrating performance that significantly outper-
forms prior methods.

Index Terms—FPGA Accelerator, Sparse Computing, Low-
latency AI Inference, Convolutional Neural Networks, Recur-
rent Neural Networks, Large Language Models

I. Introduction
Artificial intelligence (AI) has recently revolutionized

many fields of computer science, including computer vision
and natural language processing, etc. [1]. Its tremendous
success is primarily attributed to deep neural network
models with extensive parameters and multiple layers,
such as Convolutional Neural Networks (CNNs) [2], Recur-
rent Neural Networks (RNNs) [3], and Transformer-based
large language models (LLMs) [4]. However, the significant
parameter size and computational demands of deep neural
network models place immense pressure on computing
systems and processors. For example, GPT-3 [5] comprises
numerous transformer blocks with 175 billion parameters,
necessitating at least 16 NVIDIA A10 GPUs to operate
under a batch size of 1. Sparsity-centric optimizations have
emerged as a critical approach to reducing data volume
and computational load [6]–[11].

Extensive research has demonstrated the pervasive pres-
ence of sparsity in various types of neural network models.
Han et al. [12], [13] discovered that eliminating significant
redundancy in CNN models—by pruning over 90% of
the weight parameters—can maintain model accuracy
with minimal degradation. Similar findings have been

observed in different RNN models, where sparsity ranges
from 50% to 97% [8], [14]. Additionally, several studies
have explored sparsity in large language models (LLMs),
revealing sparsity levels of at least 50% [11], [15]–[17].

While the existence of such sparsity suggests consider-
able potential for computational acceleration, where 80%
sparsity could theoretically lead to a 5x speedup, the
practical realization of these benefits is challenging. The
irregular spatial distribution of non-zero data in sparse
matrices results in highly irregular memory access patterns
and computations, leading to suboptimal acceleration
on conventional hardware. To address these challenges,
numerous works have proposed specialized sparse accel-
erators [8], [18], [19]. These accelerators are designed
with specialized hardware architectures to mitigate the
difficulties posed by irregular computation patterns on
general-purpose processors. Although these approaches
have achieved some acceleration, they require complex cir-
cuit designs and substantial area overheads. Furthermore,
they have not yet fully exploited the potential of sparsity.

On the other side, further works [20], [21] suggest using
coarser-grained weight pruning methods to induce more
structured sparsity patterns for better hardware accel-
eration. Coarse-grained pruning methods prune weights
in the granularity of larger and more regular blocks.
From the hardware perspective, blocks of non-zero weights
can enable contiguous memory accesses and better utilize
parallel computation resources. Unfortunately, it becomes
challenging to maintain the same model accuracy when
block sparsity is applied. Block sparsity constrains the
locality of the non-zero weights, and important weights
could be mistakenly pruned, resulting in model accuracy
loss. Furthermore, the block size (i.e., pruning granu-
larity) is application-sensitive, making it another hyper-
parameter to tune. Existing work often needs to search
a range of block sizes to find a trade-off between model
accuracy and hardware efficiency [15], [20], [22], [23].

To address these issues, this work presents Fine-grained
Structured Sparsity (FSS), a novel sparsity pattern for
pruning deep neural networks. FSS divides each weight
matrix row into regularly sized sub-matrices and applies
fine-grained pruning to each sub-matrix independently
to achieve consistent sparsity across all sub-matrices.
FSS preserves the unstructured distribution of non-zero
weights within each sub-matrix, thus maintaining higher
model accuracy compared to block sparsity. Addition-0000–0000/00$00.00 © 2021 IEEE
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ally, the regularity of the sub-blocks simplifies hardware
design, making it cost-effective. Experimental results in
Section VI demonstrate that FSS achieves nearly the same
model accuracy as unstructured sparsity and significantly
outperforms block sparsity when pruning weights at the
same sparsity level.

Furthermore, we demonstrate that FSS effectively ad-
dresses challenges in LLMs. Previous research [24], [25]
has shown that, unlike CNNs and RNNs, the importance
of weights in LLMs is often influenced by the values
of activations, particularly those of large outliers. As a
result, despite the weights in LLMs exhibiting a random
distribution similar to CNNs and RNNs, the spatial
distribution of important weights often clusters when
considering the impact of activations. This clustering
makes it difficult for conventional FSS methods to achieve
optimal results. To address this issue, we propose a
channel-wise re-distribution strategy, namely CR-FSS,
which redistributes clustered important weights to align
with the distribution characteristics that FSS excels at.
CR-FSS designs adaptive re-distribution strategies to
match the data distribution characteristics of different
layers in LLMs.

Importantly, FSS is also well-suited for FPGA-based
specialized hardware acceleration. We design an FPGA
accelerator to leverage the benefits of FSS and eliminate
the computational overheads associated with unstructured
sparsity within FSS sub-matrix. Specifically: 1) our
accelerator utilizes the intrinsic bank-balanced property of
FSS to achieve high parallelism in SpMxV with guaran-
teed load balance; 2) it supports concurrent random access
requests to vector elements without conflicts in SpMxV
by adopting banked scratchpad memory to buffer vectors;
3) considering the unique data distribution characteristics
of LLMs, we propose a channel re-distribution hardware
unit that efficiently reorders data during transmission;
and 4) to avoid the decoding overheads of FSS and CR-
FSS, we introduce a novel sparse encoding format for FSS
matrices that is decoding-free in our FPGA accelerator,
called BBS, and a bitmap-based encoding for the channel
re-distribution unit to adaptively reorder channels on the
fly, called CRB. Notably, the FSS accelerator is highly
efficient even for inference with a batch size of 1, by
exploiting fine-grained parallelism from a single sample,
which is challenging for unstructured sparsity.

Overall, this paper makes the following contributions:
• We propose Fine-grained Structured Sparsity, a novel

sparsity pattern that can both maintain model ac-
curacy and enable an efficient FPGA accelerator
implementation. With FSSand CR-FSSextension, our
work can efficiently and effectively leverage sparsity
in a broad range of AI models, including CNN, RNN
and LLM.

• We design a general FPGA-based accelerator for
FSS that eliminates in-efficiencies caused by the
irregular computation and memory access patterns,
and achieves good efficiency for ubiquitous AI model
inference at a batch size of 1.

• Implemented on Alveo U250 and U280 FPGA, the
FSS accelerator achieves 1.5 × −3.8× speedup on
ubiquitous AI models, including CNN, RNN, and
LLM on high-end GPGPU with sparse tensor cores
with negligible loss of model accuracy.

II. Background and Motivation
A. Sparsity in Deep Neural Networks

The redundancy in neural networks has been well
recognized since the 1990s by Le-Cun et al. [26]. In
recent years, fine-grained weight pruning approaches have
removed over 90% of weight parameters in popular CV and
NLP models [8], [13], [14], significantly reducing model size
for deployment and inference services. Iterative pruning,
first introduced by Han et al. [12], prunes individual
weights below a monotonically increasing threshold value
and then retrains the remaining weights iteratively. This
method has been shown to retain model accuracy across
a wide range of popular neural network models, including
CNNs [19], [27], RNNs [28], [29], and LLMs [11], [15]–[17],
[30].

Further research into LLMs [16], [24] has demonstrated
that, although the distribution of weight values in LLMs
is similar to that in typical AI models such as CNNs and
RNNs, approximately 1% of activations in LLMs, known
as outliers, have a significant impact on weight pruning
results. These outliers have significantly larger values,
often several times greater, or even one or two orders
of magnitude higher, than other values in the matrix.
Pruning weight values without considering these large-
value activations can have a highly negative impact on
model accuracy. Consequently, many works have proposed
activation-aware pruning methods [17], [25], which achieve
better results compared to direct pruning. Additionally,
to efficiently utilize hardware’s computation power, some
studies [15], [31] have applied structured pruning to LLMs.
However, direct pruning can still significantly reduce
model accuracy.

B. Sparsity-centric Optimizations in AI Accelerator
Sparsity reduces computation and memory footprint,

providing significant acceleration opportunities. However,
the straightforward redundancy-oriented pruning intro-
duces irregularity in models. To address these issues,
researchers have proposed a series of solutions, which can
be categorized into two main approaches.

The first approach involves hardware-friendly algo-
rithms and software optimizations. The primary idea is
to impose more regular sparsity patterns, making sparse
matrices more amenable to hardware computation with
features like continuous memory access, regular data
structures, and organized computation patterns. These
pruning patterns fully consider the model structure, such
as filter and channel level sparsity for CNNs [32], [33], gate
and cell state sparsity for RNNs [34], low-rank approxi-
mation [35], and block sparsity [10], [23]. As pointed out
by Mao et al. [36] and Zhu [37], coarse-grained sparsity
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(c) LLM Weight (d) LLM Activation

(a) CNN Weight (b) CNN Activation

Fig. 1. Data Distribution of Two Representative AI Models, where
(a)(b) stands for CNN (ResNet-56) and (c)(d) stands for LLM (OPT-
6.7B).

benefits computation-intensive accelerators (e.g., GPUs)
but results in a notable accuracy penalty compared to
fine-grained approaches.

The second approach employs custom hardware to ac-
celerate sparse matrix computation. These designs create
specialized hardware structures to handle fragmented ran-
dom data accesses and irregular computations on various
hardware platforms, including ASICs [38]–[41], GPUs [42]–
[45], and FPGAs [8], [9], [46], [47]. These specialized
hardware solutions typically adopt a software and hard-
ware co-design approach, enabling efficient parallelism and
effectively skipping zeros. They also incorporate special
logic in the data path to resolve irregular data movements.
The key challenge lies in managing sparse computations’
irregularities and imbalances with minimal circuit design
complexity and hardware overhead. In our works presented
at FPGA 2019 [6] and AAAI 2019 [7], we introduced
a bank-balanced pruning method that facilitates a fine-
grained structured sparsity pattern that balances the
randomness required for algorithmic accuracy with the
regularity needed for efficient hardware implementation.
In 2020, NVIDIA’s Ampere series GPUs introduced the
Sparse Tensor Core [48] with a fixed 50% sparsity fine-
grained structured computation method, known as N:M
(2:4 or 4:8) sparse, which doubled the peak GPU perfor-
mance.

C. Weight Distribution Analysis
Although our previous work demonstrated that FSS

pruning achieves favorable sparsity outcomes in CNNs and
RNNs, further experimentation has shown that the unique
data distribution characteristics of LLMs make it difficult
for a direct FSS pruning approach to maintain model
accuracy. To efficiently support the three mainstream
types of AI models—CNNs, RNNs, and LLMs—within
a unified sparse computing framework, we conducted an

in-depth analysis of the numerical distribution of LLM
data, and yield two key observations.

Observation 1: For CNNs and RNNs, the important
elements in their activation and weight matrices exhibit a
random spatial distribution without outliers. Fig.1(a)(b)
illustrates the three-dimensional visualization of the ac-
tivation and weight matrices, where the height at each
position represents the absolute value of that element. As
shown in this figure, the distribution in both matrices
is quite similar, with 100% of the weights falling within
the range of 3 × σ, and no exceptionally large values.
Additionally, we observe that the larger values (those
in the top 50% by magnitude) are randomly distributed
in space without any specific pattern. This distribution
poses significant challenges for traditional coarse-grained
structured sparsity methods, as they are more likely to
mistakenly prune important weights, leading to reduced
model accuracy, or they need to reduce the pruning ratio
to maintain the desired model accuracy.

Observation 2: For LLMs, the spatial distribution of
elements with large and small values in the weight matrix
is quite similar to that observed in CNNs and RNNs.
However, the distribution of activations differs signifi-
cantly. Fig.1 shows the three-dimensional visualization of
the activation and weight matrices, where the height at
each position represents the absolute value of that element.
We can observe that some elements have exceptionally
high values, with some exceeding 10 × σ. Due to their
large values, these important outliers contain crucial
information. Therefore, even weights with relatively small
values cannot be pruned if they are involved in compu-
tations with these outliers. We have observed a certain
‘clustering effect’ among the outliers: on one hand, the
spatial locations of outliers tend to be consistent across
different tokens, and we refer to a dimension with a
majority of outliers as a channel. On the other hand, the
spatial distribution of these outlier channels is random
but often clustered together. This clustering of outlier
channels presents challenges for traditional fine-grained
structured pruning methods, as their design principle is
to apply fine-grained pruning within sub-matrices locally.
If important weights are concentrated in a local region,
it becomes easier to inadvertently prune some crucial
weights, thereby affecting model performance. Currently,
there is no effective method to address this issue. Similar
phenomenon has also been noted in previous studies
[24], [49], [50], which exploit it to improve quantization;
however, our focus is on addressing pruning challenges.

III. Framework Overview
Based on the analysis in Observation 1, we understand

that preserving model accuracy after pruning requires
retaining the randomly distributed important weights as
much as possible. Therefore, the key to enabling AI
hardware to fully benefit from the computational and
storage advantages of sparsity lies in resolving the conflict
between the ”randomness” required by algorithms and the
”regularity” needed for efficient hardware. This balance is
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Fig. 2. Framework Overview

essential to achieve both high model accuracy and effective
hardware acceleration. In this paper, we propose a new
sparsity paradigm called Fine-grained Structured Sparsity
(FSS). This approach retains the necessary algorithmic
randomness locally within the weight matrix while main-
taining global regularity. Our work demonstrates that this
local randomness can effectively approximate the charac-
teristics of original fine-grained pruning algorithms, while
the global regularity can significantly reduce hardware
design complexity, resulting in efficient acceleration at
lower costs. To address the issues identified in Observation
2, we further propose the CR-FSS method, enabling large
language models (LLMs) with specific sparse patterns to
also benefit from the acceleration provided by FSS.

Building on Fine-grained Structured Sparsity, we devel-
oped a software-hardware co-designed sparse computing
framework for AI inference. As illustrated in Fig.2, this
framework comprises both software and hardware com-
ponents. The software component automatically analyzes
the importance of each value in the AI model’s weight ma-
trix, pruning unimportant weights while retaining crucial
ones according to the Fine-grained Structured Sparsity
paradigm, thereby generating a new FSS sparse matrix.
For LLMs, our framework analyzes the activation and
weight matrices, rearranging the elements in these ma-
trices according to the CR-FSS method, an extension of
FSS for LLMs. The compatible FSS and CR-FSS pruning
schemes provide a unified sparse computing method that
enables efficient acceleration of CNN, RNN, and LLM
models using FPGA hardware accelerators.

In the hardware component, we first define a novel
unified sparse encoding format suitable for FSS and CR-
FSS hardware computations, called bank-balance sparse
encoding (BBS). Based on BBS, we propose an efficient
FPGA sparse computing accelerator that addresses the
randomness in FSS with lower hardware complexity,
maximizing parallelism and fully exploiting the potential
of sparsity in AI models. To handle the dynamic char-

acteristics of outliers in LLM models, we incorporate a
Channel Re-distribution Unit (CRU) in the data input
path, allowing the hardware to dynamically adapt to
different outlier distributions across various LLM layers
and models.

The remainder of this paper is organized as follows.
Section IV introduces the Fine-grained Structured Spar-
sity paradigm and the pruning algorithm based on this
paradigm, followed by a detailed analysis of its effects on
different neural network models. Section V discusses the
efficient sparse encoding format BBS and the design of its
hardware accelerator.

IV. Fine-grained Structured Sparsity

A. Fine-grained Structured Sparsity (FSS )

For matrices represented in FSS, each matrix row is
split into multiple equal-sized banks (i.e., sub-rows), and
each bank has the same number of non-zero values. Fig.3
illustrates FSS with an example and compares it with
unstructured sparsity and block sparsity. In this example,
three sparse matrices with different sparsity patterns are
all pruned from the dense example weight matrix in
Fig.3(a) with a sparsity ratio of 50%. The straightforward
pruning globally sorts the weights and prunes the smallest
50% of weights, leading to an unstructured sparse matrix
(Fig.3(b)); Coarse-grained pruning induces a block sparse
matrix (Fig.3(c)) by setting the block size to 2x2 and the
block representative with the block average; Our bank-
balanced pruning induces a bank-balanced sparse matrix
(Fig.1(d)) by splitting each matrix row into 2 equal-sized
banks and applying fine-grained pruning inside each bank
independently.

We design this FSS sparsity pattern with consider-
ation of both hardware efficiency and model accuracy.
In general, partitioning weight matrix into multiple sub-
matrices is mandatory for parallel computing. In FSS ,
each matrix row is split into multiple banks with the same
size and same sparsity. This bank-balanced partitioning
enables an efficient SpMxV design to exploit both inter-
row parallelism and intra-row parallelism (i.e., inter-bank
parallelism) with guaranteed load balance and no vector
access conflicts. The detailed SpMxV design for FSS will
be described in Section V-B. In addition, since FSS applies
fine-grained pruning within each bank independently, the
relatively large weights which contribute more to model
accuracy in each bank can be preserved.

Another potential design for a sparsity pattern would be
to split weight matrices into 2-D blocks like block sparsity
and apply fine-grained pruning within each 2-D block.
Larger weights within each block can be preserved as well
in this scheme. However, after pruning, each 2-D block is
still an unstructured sparse matrix. It is still challenging to
design an efficient hardware accelerator architecture due
to the irregularity of sparse sub-matrices. For example,
parallelizing SpMxV across 2-D blocks leads to concurrent
irregular vector accesses.
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Fig. 3. Pruning (a) original weight matrix with (b) unstructured sparsity, (c) block sparsity, (d) fine-grained structured sparsity.

Fig. 4. Illustration of Channel Re-distributed Fine-grained Structured Sparsity

Original

Original

Fig. 5. Weight map visualization for RNN with (a) unstructured sparsity, (b) FSS, and (c) block sparsity (sparsity ratio = 90%).
Original

Original

Fig. 6. Weight map visualization for LLM with (a) unstructured sparsity, (b) FSS, and (c) CR-FSS. (sparsity ratio = 50%)

B. Channel Re-distributed FSS (CR-FSS )

As revealed in Observation 2, the outlier values in
activations have a significant impact on the importance
of weights in large language models (LLMs). Despite
the random distribution of outliers, they often exhibit
clustering effects, meaning that outliers frequently appear
in close positions. This leads to important weights also
being located nearby. Therefore, although the distribution
of weight values in LLMs is similar to that in CNNs and
RNNs, directly applying Fine-grained Structured Sparsity
(FSS ) pruning may not achieve the desired minimal
impact on model accuracy. Fig.4 illustrates a 32x64 region
of the weight matrix from the OPT-6.7B model. Each
pixel represents a weight element, where darker colors
indicate more important weights and lighter colors denote
less important ones. As shown in Fig.4(a), when applying
unstructured sparsity pruning, as depicted in Fig.3(b), we
observe a ”channel clustering” effect. In this phenomenon,

many important weights are concentrated in specific local
regions (on the left), while other regions (on the right)
contain relatively few important weights. If we apply the
FSS method directly, as in Fig.3(d), it leads to the pruning
of many critical weights (darker colors) in the left region,
while less important weights (lighter colors) in the right
region are unnecessarily preserved, as shown in Fig.4(b).

To address this issue, we propose a method called
Channel Re-distribution FSS (CR-FSS ). This method
considers the influence of activations on weight importance
during Fine-grained Structured Pruning. First, we obtain
a weight importance matrix by calculating the product
of the norms of weights and activations, as shown in
Fig. 4(b). This matrix helps us examine the spatial
distribution of important weights. If a significant number
of important weights are clustered in a local region, direct
FSS pruning may result in the removal of many important
weights, adversely affecting model accuracy, as shown in
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Fig. 4(c).
CR-FSS addresses this issue by redistributing the

weights in the channel dimension, swapping channels with
a high concentration of important weights with those
having fewer (or no) important weights. This redistribu-
tion ensures a more balanced distribution of important
weights across FSS sub-matrix. Pruning the weight matrix
based on this redistributed structure avoids the excessive
pruning of clustered important weights, thereby preserv-
ing as many important weights as possible. Fig. 4(d)
demonstrates an example of channel redistribution. We
sum the weight importance within each channel to obtain
the channel importance and then reorder the channels
based on their importance to achieve a uniform spatial
distribution of important weights across the tensor. It
is important to note that since GEMV computation
ultimately sums up the results of vector multiplications,
the channel redistribution only changes the order of
computation without affecting the correctness of the final
result, as illustrated in Fig. 4(a).

C. Weight Pruning Algorithm for FSS/CR-FSS
The FSS and CR-FSS methods can be effectively

applied to various CNN, RNN, and LLM models, as well
as different pruning algorithms. FSS requires the weight
parameter matrix to be evenly partitioned into equally
sized sub-matrices, which can take any regular shape
such as vectors, squares, or rectangles. Within each sub-
matrix, weights are pruned based on their importance,
with weights of lower importance being removed. For
CNNs and RNNs, weight importance is determined by the
absolute value of the weights. For LLMs, weight impor-
tance is determined by the absolute value of the product
of the weight and its corresponding activation. Other
methods for defining weight importance are compatible
with FSS and CR-FSS, offering researchers flexibility.
However, a key requirement of FSS/CR-FSS is that all
sub-matrices must maintain the same sparsity level, i.e.,
the number of non-zero elements must be consistent
across all sub-matrices. Furthermore, FSS/CR-FSS can
be integrated with various pruning algorithms, including
iterative fine-tuning and post-training or one-shot pruning
methods.

In this work, we apply the FSS pruning method
iteratively to pre-trained CNNs and RNNs similar to
previous work [8], and the one-shot pruning method to
LLMs similar to previous work in [25]. Algorithm 1
illustrates the detailed pruning process for FSS and CR-
FSS. Before applying the FSS pruning algorithm, this
algorithm calculates the importance value of each channel
and redistributes the weight matrix based on channel
importance. The parameter for selecting the top H/L
channels to swap is determined through experimental
results and is set to a multiple (specifically 10× in our
configuration) of the number of outliers. We iteratively
increase the pruning percentage from 0% to the target
sparsity, with the rate of increase with each pruning

Algorithm 1 Pruning Algorithm for FSS/CR-FSS
Input:

The matrix to be pruned, M ∈ Rm×n;
The calibration activation data, X ∈ Rbatchsize×n

(Only For CR-FSS) ;
The number of banks per row, BankNum;
The expected sparsity, Sparsity;

Output:
The pruned matrix, Mp;

1: if FSS== True then
2: Score = M (Score ∈ Rm×n)
3: else if CR-FSS== True then
4: for each Ni ∈ M.cols do
5: Score[:,i] = Ni × ||Xi||2 (Score ∈ Rm×n)
6: Si = sum(Score[:,i])
7: end for
8: Pick Top H channel with highest Si

9: Pick Top L channel with lowest Si

10: for i ∈ H, j ∈ L do
11: if i, j is not in the same sub-matrix then
12: Swap channel i and j for M and Score
13: end if
14: end for
15: end if
16: for each Mi ∈ M.rows do
17: Divide the row Mi into BankNum blocks;
18: for each bank ∈ Mi do
19: Sort the elements in bank according to elements’

Score;
20: Calculate the bank internal threshold T in line

with Sparsity;
21: for each element ∈ bank do
22: prune element if element′s Score < T ;
23: end for
24: end for
25: end for
26: return the pruned matrix, Mp;

TABLE I
Percentages of the largest weights that are preserved in various

sparsity patterns, sp = 90%(CNN/RNN), 50%(LLM)
sp=90% Weight Matrix Unstr. Sp. Block Sparse FSS
RNN Wix 100% 42.76% 91.30%

Wcx 100% 24.24% 84.45%
CNN Layer1 100% 32.4% 64.16%

Layer2 100% 29.17% 70.355%
sp=50% Weight Matrix Unstr. Sp. FSS CR-FSS

LLM
Linear 100% 85.45% 88.15%
FFN1 100% 86.54% 92.79%
FFN2 100% 82.54% 91.75%

iteration. During the pruning process, if model accuracy
drops significantly and cannot be recovered through fine-
tuning, we revert the changes made in that iteration and
terminate the pruning procedure.

D. Analysis of Our Pruning Method
Intuitively, a pruning method should remove only

smaller weights and preserve larger weights that con-
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tribute more to model accuracy. However, structured
pruning approaches often mistakenly prune important
weights, leading to accuracy degradation. In this section,
we analyze and demonstrate the efficiency and effective-
ness of the proposed FSS and CR-FSS approaches using
real cases.

To verify the pruning effectiveness of FSS/CR-FSS and
compare them with unstructured sparsity and block
sparsity, we analyze and visualize the weight matrices
after applying the respective pruning methods on a real
LSTM [51], CNN [52] and LLM [53]. In this analysis, the
sparsity ratios are all set to 90%, the sub-matrix size for
FSS is 32, and the block size for block sparsity is 4× 4.

Figure 5 visualizes three types of pruning methods for
a 32 × 64 sub-matrix randomly selected from the entire
1500×1500 Wix. Grey grids indicate non-zero parameters,
with the grey level representing the magnitude of the
absolute value. For the second matrix represented by FSS,
each row has two sub-matrices (left and right sides of
the dashed line). Each bank has 3 non-zero weights. We
can observe that the weight map of FSS is very similar
to the weight map of unstructured sparsity, whereas the
weight map of block sparsity differs significantly due to
the locality constraint.

Figure 6 visualizes three types of pruning methods with
a 32× 64 sub-matrix selected from a FFN layer’s weight
matrix of size 4096× 16384. By comparing Fig. 6(b) and
(c), we observe that the CR-FSS method preserves some
crucial channels in the weight map that would typically
be pruned under the standard FSS method. This is due
to the standard FSS’s limitation where important weights,
unfortunately located in a sub-area with more significant
weights, are pruned. The CR-FSS method, however, ad-
justs its pruning pattern based on the contextual relevance
of weights within the matrix, ensuring that essential
connections are maintained for better model performance.

Table I shows the percentage of the largest weights
preserved in various sparsity patterns. We present the
results for Wix and Wcx, with similar results observed
for other weight matrices. Unstructured sparsity, achieved
through fine-grained pruning, naturally preserves 100% of
the largest weights by globally pruning weights with the
smallest magnitudes. FSS preserves more than 80% of the
largest weights by fine-grained pruning within each bank,
while block sparsity preserves less than half (or even a
quarter) of the largest weights. For LLM, CR-FSS further
improves the ratio of the preserved important weights
by 3% to 9%. Since prior researches have revealed that
outliers, comprising only 0.1% to 1% of the total weights,
have significantly impact on model accuracy [49], [50],
the additional preservation of 3% to 9% of important
weights by CR-FSS compared to FSS is crucial for
enhancing model performance. Our experimental results
further demonstrate that FSS outperforms block sparsity
in CNN and RNN models, and CR-FSS surpasses FSS in
LLM models in both achievable sparsity and accuracy, as
detailed in Section VI.C and Fig 11.

Fig. 7. Compressed Sparse Banks (CSB) Encoding Format

Fig. 8. The SpMxV Processing Engine for FSS and CR-FSS

Fig. 9. Channel Re-dist. Bitmap (CRB) and Channel Re-dist. Unit
(CRU)

V. Accelerator Design
A. Compressed Sparse Banks (CSB) Encoding Format

Various sparse matrix formats have been proposed to
reduce the memory footprint of sparse matrices. However,
existing formats introduce decoding overheads when per-
forming sparse matrix multiplications. For FPGA imple-
mentation, decoding sparse formats consumes hardware
resources and incurs latency. In order to liminate de-
coding overheads, we introduce a sparse matrix format
called Compressed Sparse Banks (CSB) that is specifically
designed for FSS.
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Fig. 10. Accelerator Architecture

Compressed Sparse Row (CSR) is a commonly used
sparse matrix format [54]. We use CSR as a representative
encoding of existing formats for explanation and compar-
ison. Fig. 7(a) shows an FSS sparse matrix represented
in dense format. Fig. 7(b) shows its corresponding CSR
encoding. CSR incurs two types of overheads for SpMxV
operation. First, CSR format encodes all nonzero elements
in a row-major order. Thus, rearranging the non-zero
elements are inevitable in order to exploit inter-bank
parallelism in SpMxV. Second, CSR format stores column
indices and row pointers to track the location of each non-
zero value. Thus, calculating memory addresses is required
to fetch vector elements. Other encoding formats, such as
CSC and COO have similar limitations [54].

The proposed CSB format takes advantage of the
balanced property of FSS and eliminates the need for
decoding. Fig. 7(c) shows the CSB representation of the
corresponding matrix. The CSB encoding uses two arrays
to represent a bank-balanced sparse matrix. In the first
array (i.e., values), all non-zero values are first arranged
in row-major order. Inside each row, the first non-zero
elements in each banks (e.g., ⟨A,C,E,G⟩) are listed first,
then the second elements, and so on. The purpose of
this data rearrangement is to explicitly expose inter-bank
parallelism, thus every successive N elements in CSB can
be directly fetched and computed upon in parallel. The
second array (i.e., indices) lists the bank internal indexes
of non-zero values which are column indices modulo bank
size K. When each of the N vector banks is stored in a
separate BRAM block on FPGA, the bank internal indices
can be directly regarded as physical addresses to fetch the
N corresponding vector elements in the BRAM blocks.

B. SpMxV Processing Engine for FSS
The core computation in RNNs and LLMs is sparse

matrix-vector multiplication (SpMxV), while in CNNs,
it is matrix-matrix multiplication, which can also be
decomposed into SpMxV operations. In our SpMxV de-
sign, the computation consists of multiple dot product
operations, each corresponding to a row in the sparse
matrix and the dense vector. The standard practice of

using multiple processing elements (PEs) to parallelize
dot products across matrix rows can reduce computation
time. However, the irregular memory access patterns of
unstructured sparse matrices limit the potential for further
parallelism within a dot product.

In addition to inter-row parallelism, FSS enables an
efficient SpMxV design to exploit intra-row parallelism
(i.e. inter-bank parallelism) through the bank-balance
partitioning. Fig. 8 illustrates how to exploit inter-bank
parallelism in computing a dot product of two vectors
(i.e., a BBS matrix row and the dense vector). The multi-
plications for the non-zero elements inside each bank are
performed serially, while the multiplications in different
banks are performed in parallel. In this example, the
sparse matrix row is divided into 4 banks, as is shown
in different colors. The size of each bank is 3 and the
sparsity is 1/3. The multiplied dense vector is divided into
4 banks accordingly. Our design computes the dot product
of two vectors by accumulating dot products of subvectors
whose sizes are all the number of banks (N). Each bank
of the sparse matrix row provides one non-zero element to
form one sub-vector (e.g., ⟨A,C,E,G⟩), while dense vector
elements are fetched based on the indices of non-zero
values to form another sub-vector (e.g., ⟨v0, v3, v7, v9⟩).
For computing a dot product of sub-vectors, N pair-
wise multiplications are executed in parallel. Multiple
dot products of sub-vectors are calculated in sequential
and accumulated to obtain the dot product of complete
vectors.

C. Channel Re-distribution Unit

The Channel Re-distribution Unit (CRU) is designed
to perform dynamic re-distribution of activation channels
in the input data path. Since the weight matrix is read-
only during inference, its channel re-distribution can be
pre-arranged offline. However, activations cannot be pre-
arranged because each layer’s computation generates new
activations, which then serve as inputs for the subsequent
layer. The re-distribution pattern for each layer’s acti-
vations is distinct, necessitating dynamic adjustment of
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their positions before they are fed into the FSS Processing
Engine.

The design goal of the CRU is to parallelize the re-
distribution of input vector data without impeding the
data transfer process to the computation units. To achieve
this, we employ a cross-bar switch design, utilizing one-hot
bitmap encoding to control the corresponding switches. As
illustrated in Fig. 7, this method allows the re-distribution
to be completed as the data flows through the unit,
without introducing additional clock cycles.

D. Overall Architecture Design
Accelerator Integration: Fig. 10 shows the overall

architecture of the FSS accelerator, which includes a
sparse matrix-vector multiplication unit (SpMxV Unit),
an element-wise vector operation unit (EWOP Unit),
a channel re-distribution unit (CRU), a direct memory
access module (DMA) for load/store operations, on-chip
memories for matrices and vectors (Matrix Memory and
Vector Memory), and a central controller. Before hardware
acceleration, the host server uses the FSS pruning method
to prune weight matrices and represents sparse matrices
in the proposed Compressed Sparse Banks (CSB) format,
as well as the Channel Re-distribution Bitmap (CRB).
A lightweight compiler then generates instructions for
the hardware accelerator to execute the computation
of AI models. The controller receives and stores these
instructions from the host server in the instruction buffer
and dispatches them to the corresponding modules for
execution.

At the center of Fig. 10, the detailed architecture of
a processing element (PE) is shown. Each PE contains
a private vector buffer (PVB) to buffer the dense vector
being multiplied, as vector elements are randomly accessed
multiple times for all matrix rows in SpMxV. The PE
computes the dot product of two vectors by accumulating
dot products of sub-vectors through the following steps:
(1) The PE reads N matrix row elements from the matrix
memory and N vector elements from the private vector
buffer based on the sparse indices. (2) N multipliers
operate simultaneously to obtain N scalar products. (3)
An N -input adder tree sums the N scalar products
to calculate the partial dot product. (4) An additional
accumulator is used to obtain the complete dot product.
(5) The dot product result is written back to the global
vector memory. The PE is fully pipelined, allowing one
operation to be processed per clock cycle. With M PEs
and N multipliers per PE, this PE array achieves M ×N
parallelism for a single SpMxV operation.

EWOP Unit: The EWOP unit performs various
element-wise operations on vectors based on the instruc-
tion opcode. Vector addition and multiplication generate
one result vector by reading two source vectors. Activation
functions only read one source vector and apply nonlinear
functions to it to generate one result vector. The EWOP
unit contains M operators operating in parallel for each
kind of operations to reduce latency.

Controller: In the computation flow of AI models,
some SpMxV and EWOP operations can be executed
simultaneously. The software compiler analyzes the com-
putation flow graph and identifies dependencies within
the instructions. The controller then parallelizes these
instructions based on the dependencies indicated by the
software compiler. When either the SpMxV unit or the
EWOP unit becomes idle (indicating that an instruction
has finished execution), the controller checks if the next
instruction depends on the instruction currently being
executed by the other unit. If no dependency exists, the
controller dispatches the next instruction to the idle unit,
enabling simultaneous operation of the SpMxV unit and
the EWOP unit.

E. Comparison to other SpMxV Accelerators
Recently, numerous sparse matrix-vector (SpMxV)

hardware designs have emerged [55], [56]. These accelera-
tors typically target matrix densities in the range of E−3 to
E−9, corresponding to sparsities of 99.9% to 99.9999999%,
primarily focusing on tasks such as scientific computing.
In contrast, the sparsity in AI workloads typically ranges
from 50% to 90% and rarely exceeds 99% [12], [57].
This significant disparity in density (or sparsity) levels,
spanning over two orders of magnitude or even more, leads
to vastly different data patterns, which in turn result in
notable distinctions in the design principles for optimized
accelerators in each domain.

One key difference lies in their sparse encod-
ing/decoding schemes. For matrices with extremely high
sparsity, the non-zero elements are distributed very
sparsely, which implies that only one in a thousand or
even a million elements is non-zero. In such cases, a list-
based encoding approach is often employed, where each
non-zero element is recorded along with two additional
pieces of information, such as its column and row indices,
to track its position. For high-dimensional sparse tensors,
even more indices are required, resulting in a complex en-
coding structure. However, this encoding method becomes
inefficient for matrices with sparsity levels between 50%
and 90% in AI matrix computations. For example, in a
matrix with 50% sparsity, the ratio of zero to non-zero
elements is 1:1, meaning that compressing a single zero
element would require more index codes if we were to use
a similar sparse encoding format as for extremely sparse
matrices. This not only imposes significant storage and
memory access overhead but also increases the complexity
of encoding and decoding computations.

As a result, accelerators designed for AI matrix compu-
tations typically employ an array-based encoding scheme.
In this approach, non-zero elements and their positional
codes are organized in a way that aligns closely with
the matrix’s inherent structure. For example, the CSB
encoding method proposed in this paper (Fig.7) arranges
non-zero elements and their corresponding indices into
tiles of the same size, using local encoding within each
block. This significantly reduces the complexity of encod-
ing. Additionally, AI workloads require consideration not
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only of computational efficiency but also of how the sparse
pattern impacts model accuracy, a factor that must be
carefully addressed in the design of sparse AI accelerators.

In summary, the differences in sparsity levels and
data distribution patterns lead to distinct approaches in
the design of sparse encoding format and corresponding
SpMxV accelerators for AI workloads compared to those
for scientific computing.

VI. Experiments
A. Evaluation Method

In this paper, we are focused on evaluating the efficiency
and effectiveness of the FSS and CR-FSS methods. We
demonstrate the advantages of the FSS-based weight
pruning method over the block sparse method in terms
of model accuracy and sparsity of the pruned weights. On
LLMs, we further demonstrate the advantage of the CR-
FSS method over the original FSS method. The efficacy
of the FSS method across CNNs, LSTMs, and LLMs is
evidenced through extensive weight pruning experiments,
highlighting its flexibility and applicability. For attention
layers, which are weight-free and thus cannot benefit from
FSS/CR-FSS optimizations, we adopt the block sparse
attention scheme as detailed in prior work [58]. To ensure
a fair comparison, we follow the configuration established
by previous state-of-the-art research [47], which places
the attention matrix and KV caches within UltraRAM.
For quantization, methods akin to SmoothQuant [24] and
FlightLLM [47] are employed, quantizing both weights and
activations to enhance computational efficiency.

On the hardware part, we compare the performances on
two hardware platforms: GPUs and FPGAs. For GPUs,
our baseline comparison involves the use of Sparse Tensor
Cores in the Ampere architecture, which employs a sparse
method similar to the approach proposed in our previous
study [6]. However, thanks to the flexible reconfigurability
of FPGA, our accelerator approach can accommodate
higher sparsity levels compared to the GPU’s Sparse Ten-
sor Cores, which are limited to fixed sparsity ratios such
as 2:4. In the context of FPGAs, while some subsequent
studies have employed N:M schemes, our work primarily
focuses on comparing the implementations of CR-FSS and
FSS on FPGAs.

B. Experiment Setup
AI Models and Data sets: 1) CNN Models: We utilize

the ResNet-56 model configuration as described in [52].
This model was tested on the ImageNet dataset [59],
which comprises over 14 million images. 2) RNN Models:
We adopt the LSTM model from [51], configured with
1500 hidden units. This model was evaluated using the
PTB dataset [60], commonly used in Natural Language
Processing (NLP) research. The PTB dataset contains
929k training words, 73k validation words, and 82k test
words, with a vocabulary of 10k words. 3) LLM Models:
We selected one state-of-the-art large language model
OPT-6.7B [53]. The accuracy and performance evaluation

TABLE II
The Proposed Accelerator’s Hardware Configurations

U250 U280 A6000
Tech Node 16 nm 16 nm 8 nm
Frequency 225 MHz 225 MHz 1410 MHz
Wght.×Act. 4× 8 bit 4× 8 bit 8× 8 bit
Computing 9216 6912 336
Units DSPs DSPs Tensor Cores
Mem. BW URAM:2592 URAM:1944 DDR: 768(GB/s) DDR: 77 DDR: 460

TABLE III
The Proposed Accelerator’s Hardware Utilization

Alveo U250 Alveo U280
LUT 795K/1,728K (46%) 704K/1,304K (54%)
FF 1140K/3,456K (33%) 913K/2,607K (35%)

BRAM 1684/2000 (84%) 1220/1490 (81.9%)
URAM 1152/1280 (90%) 864/960 (90%)
DSP 9216/11580 (80%) 6912/8490 (81.4%)

was performed using the WikiText-103 and WikiText-2
datasets [61].

For all these models, we use a batch size of 1. We prune
all layers with weight parameters, such as convolutional
layers and linear layers, while keeping parameter-less lay-
ers in their original dense forms. This includes layers with
varying degrees of sparsity and acceleration opportunities,
such as attention layers [47] and normalization layers [62],
which we leave for future research.

Hardware Platforms: 1) GPU: We use NVIDIA RTX
A6000 GPGPUs with Sparse Tensor Core architectures as
our GPU baseline. These GPUs offer approximately 300
TFLOPS of FP16 Tensor Core computation power and 768
GB/s GDDR6 external bandwidth. For block sparse opera-
tions, we use the optimized GPU implementation provided
by OpenAI [63]. We leverage the cuSPARSELt [64] library,
provided by the vendor, to utilize the Sparse Tensor
Cores hardware as the baseline. 2) FPGA: Our FPGA
implementations employ Xilinx Alveo U250 and U280
acceleration cards [65], [66]. The proposed accelerator
configurations are detailed in Table II. The static region of
each FPGA contains the deployment shell responsible for
device bring-up and configuration via PCIe. We primarily
exploit the dynamic region for accelerator implementation,
where hardware resources available on these FPGAs are
shown in Table III.

TABLE IV
Model accuracy/perplexity sensitivity to the block size in block

sparsity and in FSS/CR-FSS. All sparsity is set to 50%.

Block Sparse FSS/CR-FSS
block size 4x4 8x8 16x16 8 16 32 64
ResNet-50* 25% 20% 11.2% 91.9% 92% 92% 92%
LSTM 79.5 81.7 85.1 78.5 78.5 78.5 78.5
OPT-6.7B 16K 18K 21K 12.1 12.0 12.0 12.0
*Resnet-50 is higher the better, others are smaller the better

TABLE V
Trade-offs of FSS/CR-FSS Block Size.

Block Size 4 8 16 32 64
SP Granularity 25% 12.5% 6.25% 3.125% 1.5625%
Index Bitwidth 2 3 4 5 6
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Fig. 11. Accuracy/Perplexity for Different Pruning Methods on Various Sparsity Ratio

Fig. 12. Speedup of (CR-)FSS-based FPGA Acceleration over GPU Tensor Core and Sparse Tensor Core baseline. For ResNet-50, the layer
config is [input channel, feature-map size, output channel]. For LSTM, the layer config is [input channel, output channel]. For Opt-6.7B,
the layer config is [sequence length, token size, intermediate size].

C. Model Accuracy and Perplexity
We evaluate the model accuracy and perplexity with

unstructured sparsity and FSS/CR-FSS applied respec-
tively, as is depicted in Fig.11. Overall, the behaviour of
FSS/CR-FSS is very close to unstructured sparsity. For
CNN&RNN models, when sparsity is lower than 70%, the
accuracy and perplexity of these methods can remain at a
certain level. There is a sharp degradation when sparsity
is higher than 80%. For LLM models, the perplexity grows
with sparsity in both unstructured sparsity and FSS/CR-
FSS.

Comparison to block sparse pruning. We further con-
duct an evaluation on the block sparsity with (4,4) block
size. Fig.11 illustrates that the accuracy and perplexity
deteriorate quickly when sparsity grows for block sparsity.
For CNN model, the accuracy begins to decrease fast at
30% sparsity with block sparsity, while the turning point
of FSS/CR-FSS is 70% sparsity. For LLM, the perplexity
skyrockets even at 10% sparsity with block sparsity.
This is because FSS/CR-FSS applies fine-grained pruning
within each bank, while block sparsity is coarse-grained
where important weights may be pruned. Moreover, the
block sparsity does not take account for the activation’s
impact on the weight, while CR-FSS considers this point
and swaps the channels of weight and activation matrices.
Another advantage of FSS/CR-FSS is its stability in
maintaining model accuracy. As shown in Table IV, for
block sparse, the quality of all three models deteriorates
significantly as the block size increases (e.g., a decline in
ResNet accuracy, and an increase in perplexity for the
other two models). In contrast, for FSS/CR-FSS, model
quality remains highly stable, showing little dependence
on block size.

Comparison to other N:M sparse pruning. We im-
plement previous state-of-the-art N:M weight pruning
methods Wanda [25] as it also prunes LLM weight ma-
trices considering both activation and weight. Fig.11(c)

demonstrates that our CR-FSS has a better performance
than both original FSS and Wanda [25]. The original FSS
method does not account for the impact of activation
outliers and prunes weights solely based on their magni-
tudes, resulting in significantly lower accuracy compared
to the other two methods. Specifically, the original FSS’s
accuracy at 40% sparsity is comparable to that of CR-
FSS at 60% sparsity. Moreover, although both Wanda and
CR-FSS consider activation’s impact when pruning weight
matrices, our CR-FSS swaps the channels to prevent
mistakenly pruning of important weights in outlier-rich
area, and hence leading to better model accuracy.

Trade-offs of FSS/CR-FSS’s Block Size. Block size is
the key to balance the sparsity performance gains and
hardware cost. As illustrated in Table V, as the block
size increases, the granularity of sparsity that can be
represented becomes finer, but also requires a wider
bitwidth for indexing. According to prior research [57]
as well as the experimental results shown in Fig.11, the
sparsity levels of the AI models mostly ranges from 50%
to over 90%. Based on this observation, we determined
a block size of 16. Reducing the block size to 8 would
limit the supported granularity, failing to fully exploit the
benefits of layers with sparsity exceeding 90%. Conversely,
increasing the block size to 32 or beyond offers diminishing
returns, as layers with sparsity levels above 95% are rare,
and doing so would increase hardware cost due to the need
for 5-bit indexing. It is worth noting that in NVIDIA’s
Ampere GPGPU, the Sparse Tensor Core operates in a
fixed 2:4 sparsity mode, resulting in a fixed 2-bit index
width. This mode only leverages 50% sparsity, and fails to
fully exploit higher sparsity potentials, such as the 68.75%
sparsity observed in the Opt-6.7B.

D. Accelerator Speedup
Kernel Speedup: Compared to GPU implementations,

our approach achieves a higher acceleration ratio under the
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Fig. 13. End to end speedup. The performance data is based on the
average inference time running on the dataset in SectionVI-B. We
use U250 FPGA for CNN workloads and U280 FPGA for RNN and
LLM workloads.

same algorithmic accuracy by utilizing greater sparsity,
which leads to reduced memory access and computational
demand. The sparse tensor cores of GPUs only support
a fixed sparsity of 50%. Hence, we observed acceleration
ratios ranging from 1.3x to 1.6x compared to the baseline
of dense GPU computations. In CNN models, our FSS
achieved sparsities between 60% and 90% across different
layers, resulting in a performance increase of 2.1x to
3.8x over dense GPU matrix computations. The U250
FPGA, possessing more DSP resources, demonstrates
greater advantages in the more computationally intense
convolution operations compared to the U280 FPGA.
For RNN models, FSS achieved an average sparsity of
80%, while block sparsity only reached 50%. In such
cases, the FSS accelerator based on U280 FPGA exhibited
acceleration ratios from 2.4x to 2.8x compared to dense
GPU computations. However, due to external bandwidth
limitations, the performance advantage of the U250 FPGA
in RNN applications is not significant compared to the
A6000 GPU with a bandwidth of 768GB/s.

For LLM models, since the block sparse pruning method
results in significant accuracy loss at 10% sparsity, our
focus shifted to comparing the FSS and CR-FSS schemes.
CR-FSS maintains higher accuracy by preserving more
critical weights. Although the perplexity turning points
for FSS and CR-FSS occur at around 50% to 60% sparsity,
CR-FSS allows some layers to exceed the average sparsity
level, such as reaching 68.75% in layer L30. Relative to
a 50% sparsity providing a theoretical 2x acceleration
ratio, a 68.75% sparsity can offer up to a 3.17x theoretical
speedup. Practical experiments have shown that CR-FSS
on the U280 FPGA offers a performance improvement
of 1.5x to 2.6x compared to dense GPU computations.
However, due to the limited external bandwidth of the
U250 FPGA and the lower sparsity in LLM models, its
performance is even slower than the baseline.

End-to-end Performance: Fig.13 presents a detailed
analysis of the end-to-end speedup and the performance
breakdown of FPGAs. All performance metrics have
been normalized to the baseline implementation using
NV A6000’s Dense Tensor Cores. For the naive FPGA
implementation, we port Caffine [67] to U250 and U280
FPGAs as the baseline for dense models. Compared to
GPU-accelerated dense models, the performance of the
naive FPGA only ranges from 0.38x to 0.72x. This discrep-
ancy primarily arises from GPUs’ formidable computing

capability up to 600 TFLOPS in Int8 precision and a
DRAM read/write bandwidth of 768 GB/s, far surpassing
that of FPGAs. By employing the sparsification strategies
of FSS/CR-FSS, which significantly reduce the workload,
we achieved acceleration effects ranging from 1.32x to
2.42x on FPGAs. Additionally, FPGAs benefit from lower
precision quantization (e.g., 3-bit), an acceleration benefit
GPUs struggle to utilize effectively. This acceleration is
particularly pronounced in memory-bound models such as
RNNs and LLMs, providing additional speedup ranging
from 0.21x to 0.61x.

Comparison to other FPGA accelerators: Recent studies
have leveraged FPGAs to accelerate LLMs, including
initiatives like DFX [68], FACT [69], CTA [70], and
LightLLM [47]. These efforts utilize a combination of
model compression techniques to achieve significant ac-
celeration, incorporating strategies such as lower precision
quantization, sparse attention etc. These techniques are
complementary to the FSS proposed in this paper and
can be integrated to further enhance the performance of
FPGA-based AI accelerators. Some works have adopted
an N:M sparsity approach similar to that discussed in
this paper [6], [7], such as FlightLLM [47]. This study
primarily investigates the impact of the FSS method on
model accuracy and its acceleration performance, as well
as its applicability across different AI models including
CNNs, RNNs, and LLMs. Furthermore, addressing the
original FSS method’s limitations in handling outliers
within LLMs, this paper extends the method to CR-FSS.
This approach solves the aforementioned challenges with
minimal hardware overhead.

VII. Conclusion
This paper addresses the issue of low-latency AI model

inference by proposing a sparse FPGA accelerator based
on Fine-grained Structured Sparsity (FSS) and Chan-
nel Redistributed Fine-grained Structured Sparsity (CR-
FSS). We evaluated the impact of our method on model
accuracy across three different types of AI models: Convo-
lutional Neural Networks (CNNs), Recurrent Neural Net-
works (RNNs), and Large Language Models (LLMs). The
computational efficiency and acceleration performance of
the dedicated FPGA accelerators were validated on Alveo
FPGA platforms U250 and U280. Compared to the high-
end GPU NV A6000, which features Sparse Tensor Cores,
our approach achieved acceleration ratios ranging from
1.5x to 3.8x.
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