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Abstract—The emergence of the large language model (LLM)
poses an exponential growth of demand for computation through-
put, memory capacity, and communication bandwidth. Such a
demand growth has significantly surpassed the improvement of
corresponding chip designs. With the advancement of fabrication
and integration technologies, designers have been developing
Wafer-Scale Chips (WSCs) to scale up and exploit the limits
of computation density, memory capacity, and communication
bandwidth at the level of a single chip. Existing solutions have
demonstrated the significant advantages of WSCs over traditional
designs, showing potential to effectively support LLM workloads.

Despite the benefits, exploring the early-stage design space
of WSCs for LLMs is a crucial yet challenging task due to
the enormous and complicated design space, time-consuming
evaluation methods, and inefficient exploration strategies. To
address these challenges, we propose Theseus, an efficient WSC
design space exploration framework for LLMs. We construct the
design space of WSCs with various constraints considering the
unique characteristics of WSCs. We propose efficient evaluation
methodologies for large-scale NoC-based WSCs and introduce
multi-fidelity Bayesian optimization to efficiently explore the
design space. Evaluation results demonstrate the efficiency of
Theseus that the searched Pareto optimal results outperform
GPU cluster and existing WSC designs by up to 62.8%/73.7% in
performance (with the same or lower power) and 38.6%/42.4%
in power consumption (with the same or higher performance)
for LLM training, while improving up to 23.2× and 15.7× for
the performance and power of inference tasks. Furthermore, we
conduct case studies to address the design tradeoffs in WSCs and
provide insights to facilitate WSC designs for LLMs.

Index Terms—Wafer-scale Chip, Design Space Exploration,
Large Language Model

I. INTRODUCTION

Recent advancements in neural networks have led to a
significant escalation in model size, particularly in the realm
of large language models (LLMs). The evolution from Bert
to GPT4 [7], [11], [38] has resulted in a parameter increase
exceeding a thousand-fold. This upward trend is anticipated to
persist, owing to the superior performance of larger models in
tasks related to natural language understanding and content
generation [38], [54]. Concurrently, it necessitates signifi-
cantly enhanced computational throughput, memory capacity,
and data communication bandwidth in hardware infrastruc-
tures [43], [45]. The surge in demand has markedly exceeded
advancements in corresponding chip designs like GPUs [36],
attributed to the field size limitation of lithography steppers.

This constraint is referred to as the reticle limit, defined as 26
mm by 33 mm, or 858 mm² [5]. State-of-the-art chip designs,
such as NVIDIA H100 [36], B200 [35], and Intel Gaudi3 [18],
are approaching and even surpassing the reticle limit in scale.

Fortunately, advancements in chiplet design method [46],
die-to-die interconnection [51], and 2.5D/3D stacking meth-
ods [30], have facilitated scaling beyond the reticle limit. In-
novative chip designs that surpass the limit have been proposed
for artificial intelligence applications [10], [19], [26], [49],
etc. Among these solutions, the Wafer-Scale Chip (WSC)
designs (e.g. Cerebras WSE2 and Tesla’s Dojo) stand out as a
promising approach to maximize computation density, on-chip
memory capacity, and communication bandwidth. Cerebras
WSE2 [26] integrates 850,000 cores, 40GB of on-chip SRAM,
and 200Pb/s of on-chip fabric bandwidth on a 46,225mm²
monolithic silicon substrate and achieves 7.5 PFLOPS for
large-scale GEMM operation. Tesla’s Dojo [10] comprises
25 D1 dies, 10TB/s on-tile bisection bandwidth, and 36TB/s
off-tile aggregate bandwidth, achieving a performance of 9
PFLOPS. Compared to GPUs, these WSC designs offer over
7× the peak performance, 200× on-chip memory bandwidth,
and 5× the inter-chip bandwidth, alongside significantly im-
proved energy efficiency, enabling more effective scaling for
both training and inference tasks on LLMs.

Despite the aforementioned advantages of WSCs, it is
crucial to determine the optimal configurations of WSCs to
strike a balance in utilizing diverse resources, achieve peak
performance, and enhance energy efficiency. Our experiments
have demonstrated that improper designs can significantly
degrade the achievable performance of WSCs in LLM work-
loads, sometimes by several tens of times. Furthermore, vary-
ing application workloads and optimization objectives can
result in a range of designs, each with notable differences.
Hence, early-stage Design Space Exploration (DSE) becomes
imperative in crafting efficient WSCs capable of delivering
optimal performance and energy efficiency across a spectrum
of application requirements.

A Design Space Exploration process typically involves
three key stages: design space construction, design point
evaluation, and exploration strategy. Although DSE has been
thoroughly studied on AI accelerators [13], [31], adopting
existing DSE methods to the WSC scenario introduces chal-
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lenges in all these stages. Firstly, the design space of WSCs is
larger and more complex, requiring consideration of numerous
parameters and various constraints compared to traditional
AI accelerators. Secondly, there exists several obstacles to
evaluating the performance of a WSC configuration accurately
and efficiently, especially with regard to the communication
behaviours at scale. Lastly, conducting multi-objective opti-
mization over the complex design space poses challenges for
the explorer to efficiently characterize the target space and find
optimal designs with a minimum number of sampled design
points. To tackle these challenges, we propose Theseus, a DSE
framework to facilitate high-efficiency WSC design for LLM
workloads. The contributions of this paper can be summarized
as follows:
• We construct an extensive design space that encompasses

WSC architecture configurations with wide range of can-
didate values, and introduce parameters to explore het-
erogeneous WSC designs. We consider various design
constraints including area, power, yield, stress, etc.

• We propose a hierarchical methodology for evaluating
LLMs on WSCs through tile-level, op-level and chunk-
level evaluations with considerations of communication at
different levels. At the op-level, we employ a graph neural
network (GNN)-based method for fast and accurate NoC
estimation to support multi-fidelity optimization.

• We propose a multi-fidelity multi-objective Bayesian op-
timization (MFMOBO) algorithm to efficiently explore
the design space of WSCs for LLMs and leverage the
advantages of various evaluation methodologies.

• We conduct case studies using our proposed Theseus
framework for addressing the design tradeoffs in WSCs,
and provide analysis and insights to facilitate the design
optimization of WSCs for LLMs.

II. BACKGROUND AND RELATED WORK

A. WSC Basics
Wafer-Scale Chip (WSC) design has emerged as a promis-

ing solution to alleviate inter-reticle communication overhead
with low-cost on-wafer interconnections and has demonstrated
advantages in computational power and on-chip memory ca-
pacity for efficiently supporting neural network workloads.
The concept of WSCs has attracted significant attention from
both industry and academia. Recently, two notable commercial
WSC designs have been proposed. Cerebras WSE2 [26] em-
ploys offset exposures and proprietary layers of interconnect to
stitch dies together directly on monolithic wafers. This results
in a uniform and continuous fabric across the reticle boundary,
which provides good hardware abstraction. Tesla Dojo [10]
uses a redistribution layer (RDL) to interconnect D1 chips with
SerDes and integrate D1 chips with integrated fan-out system-
on-wafer (InFo-SoW) packaging, with known-good-die (KGD)
techniques to ensure yield requirement.
B. Related Works

Existing research on WSCs has primarily focused on two
aspects: addressing hardware design challenges and optimizing
software execution on WSC architectures. On the hardware
side, prior studies have explored WSC design methodologies

and challenges [39], [40]. On the software side, research
has investigated efficient workload mapping on specific WSC
engines [28], [29]. In LLM scenarios, Zhang et al. [55]
evaluate the performance of LLMs on the Cerebras WSE [26],
while WaferLLM [17] introduces scalable GEMM and GEMV
algorithms to enhance LLM inference efficiency on the Cere-
bras WSE-2. However, these studies leave the architectural
design space underexplored. Chiplet Cloud [42] proposes a
parameterizable chiplet-based architecture designed to reduce
the total-cost-of-ownership (TCO) for LLM serving. However,
it entirely replaces external memory (e.g., HBM and DDR)
with on-chip SRAM, significantly restricts its applicability.
Furthermore, it does not account for key design considerations
essential for WSC development.
C. WSC for LLM: Advantages and Challenges

The large computational power and on-chip buffer of WSCs
provide evident advantages for LLM workloads, facilitating
enhanced performance for compute-intensive operations and
reduced off-chip memory access through efficient on-chip data
reuse. Efficient inter-reticle communication is also pivotal for
overall performance and power improvements. In both LLM
training and inference tasks, the ever-growing model sizes
necessitate the adoption of efficient parallel strategies [48]
and memory optimizations [43] to meet memory capacity
constraints in distributed systems. These optimizations typi-
cally increase the communication between chips and nodes,
which can benefit greatly from the inter-reticle connections
of WSCs. Additionally, WSCs can leverage stacking memory
with high memory bandwidth to meet the demands of the
decode stage during inference. Although high bandwidth may
necessitate sacrificing some memory capacity, the introduced
communication can still be efficiently managed by inter-reticle
communication to ensure improved overall performance. How-
ever, compared to scale-out solutions, WSCs have less flexible
interconnect topologies between reticles, often constrained
to 2D-mesh architectures. This poses challenges for both
communication performance and system evaluation at scale.

III. MOTIVATIONAL ANALYSIS

Challenge 1: Design Space Construction. In addition to the
basic architecture parameters in traditional accelerator chips,
WSCs introduce design considerations at both the reticle and
wafer levels. Due to the large scale of WSCs, design configu-
rations such as computational capacity, memory organization
and interconnection bandwidth exhibit a broader range of
variability. Meanwhile, WSCs need to validate against various
design constraints. To address this challenge, in Theseus, we
construct an extensive design space of WSCs for LLMs,
detailed in Sec. V, and propose modeling approaches for
various WSC metrics including area, power, yield and stress.
Challenge 2: Design Point Evaluation. With the expansive
scale of computational resources in WSCs, the data transfer
between cores and reticles emerges as a crucial concern of
system performance. Due to the complexity of transmissions
introduced by multi-level parallelisms when mapping LLMs
onto WSCs, as well as the scheduling and mapping of task
Directed Acyclic Graphs (DAGs) onto local spatial archi-
tectures, we must carefully consider traffic flow congestions
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Fig. 1. Theseus Framework Overview

in NoC estimation. Traditional DSE methods rely on cycle-
accurate (CA) simulators [20] for NoC evaluation, which can
be time-consuming at the scale of WSCs. Existing NoC ana-
lytical models, in contrast, can provide rapid NoC estimation
results. However, these models usually assume predetermined
traffic patterns [37] (e.g. tornado or uniform), which may
not capture the application-specific details. Recently, several
machine learning-based methods have been proposed to ef-
ficiently evaluate application-specific NoC performance [25].
However, these methods face limitations in dealing with vari-
able package sizes and the heterogeneity in NoC bandwidth,
thereby impeding their direct application to WSC scenarios. To
address this challenge, in Theseus, we propose a hierarchical
evaluation method to reduce the estimation scale of NoC, and
introduce a GNN-based method for fast and accurate NoC
performance estimation.
Challenge 3: Exploration Strategy. WSC designs are
designed with stringent power constraints determined by
the design of heat dissipation and power delivery network
[40]. This necessitates a delicate balance between optimizing
both computation performance and power consumption. The
multi-objective optimization considering both performance
and power of WSCs is non-trivial, especially within our design
space with enormous design parameters, and irregular shapes
due to various design constraints. Meanwhile, enhancing the
convergence and efficiency of this optimization process to
minimize the number of iterations requires careful algorithm
design. To address this challenge, in Theseus, we introduce
MFMOBO to leverage the information from less accurate yet
faster evaluation methodologies.

IV. THESEUS OVERVIEW

To tackle the challenges mentioned above, we propose
Theseus, an efficient design space exploration framework that
jointly optimizes performance and power for WSC to search
for Pareto-optimal designs. Fig. 1 presents an overview of
Theseus. The DSE process begins with design space con-
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struction, which involves combining the design parameters of
WSC and employing the Design Point Validator to discard
design points that can not satisfy the constraints. Next, the
Space Explorer employs our proposed Multi-Fidelity Multi-
Objective Bayesian Optimization (MFMOBO) to iteratively
sample design points from the constructed design space. To
evaluate the sampled design points, we employ a Component
Estimator to calculate the area and power of WSC basic mod-
ules, and implement a Workload Compiler to compile LLM
workloads onto WSCs. The Evaluation Engine hierarchically
evaluates the selected WSC design in tile-level, op-graph-level
and chunk-level evaluation. The evaluation engine provides
performance and power results in different fidelity according
to the needs of the explorer. Finally, the explorer selects
design points for the next iteration based on the feedback
from the evaluation engine. This iterative optimization process
continues until reaching the pre-set iterations number, and the
Theseus framework outputs the searched Pareto optimal set.
In the following sections, we detail the designs of individual
components within Theseus.

V. WSC DESIGN SPACE

A. WSC Architecture Parameters
To comprehensively explore the architecture design of

WSCs, we consider crucial parameters in the three hierarchies
of core, reticle and wafer. Fig. 2 labels these architecture
parameters. At the Core level, on-chip SRAM capacity im-
pacts the core’s data reuse ability and the granularity of
communication between cores. SRAM bandwidth determines
the utilization of processing units and impacts intra-core
dataflow optimization. Dataflow describes the pattern of data
transmission and reuse across MAC units and the memory
hierarchy, shaping the design of fixed datapaths and the oper-
ational efficiency of various operators [13], [46]. MAC number
sets the upper limit of a single core’s tensor computation
capacity. Lastly, NoC bandwidth is pivotal in determining
the effectiveness of inter-core communication. At the Reticle
level, cores are connected with NoC to form a 2D-mesh array,
which impacts the shape and peak performance of a reticle.
Inter-reticle communication bandwidth are provided by the
communication interfaces around the reticle to support data
transmission across the reticle boundaries. We also consider
stacking DRAM for efficient memory access based on through-
silicon-via (TSV), with a certain capacity and bandwidth per
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unit area. At the Wafer level, reticles are further integrated
into an array of certain height and width. The integration tech-
nology determines the area overhead and power consumption
for inter-reticle communication. The memory controllers and
network interfaces around the wafer provide off-chip DRAM
access bandwidth and communication bandwidth between
WSCs, which allows larger memory capacity and further
scaling out of WSC systems.
B. Heterogeneous Modeling

To investigate the impact of heterogeneous WSC design
on LLM inference performance, we introduce two parameters
for characterization: prefill(decode) ratio and heterogeneous
granularity. The prefill(decode) ratio represents the proportion
of computational resources allocated to the prefill and decode
stages. Heterogeneous granularity indicates the level of hetero-
geneity in the architecture hierarchy. Fig. 3 presents several
examples of heterogeneous design at different levels. Core-
level heterogeneity is achieved through software scheduling,
where different stacking memory bandwidths are allocated to
prefill and decode stage cores within the same reticle. Reticle-
level and wafer-level heterogeneities are achieved by adjusting
stacking memory bandwidth. In reticle-level heterogeneity,
heterogeneous reticles with different memory bandwidths are
integrated into the same WSC and simultaneously execute both
stages, while wafer-level heterogeneity requires computations
for the prefill stage and decode stage to be performed on
different WSCs.
C. Defective Core Modeling

Traditionally, a core’s yield is influenced by its area and the
process technology employed. The relationship is encapsulated
by the well-known Murphy Model [33], as formulated in
Equation 1. In this model, the parameter A represents the
core area (in cm2), while D denotes the defect density (in
defects per cm2), serving as an empirical parameter associated
with the process technology. The function f(D) denotes the
probability density function (PDF) of D.

Y ieldMurphy =

∫ ∞
0

e−ADf(D)dD (1)

In WSC design, additional factors such as screw holes and
Through-Silicon Vias (TSVs) may further impact a core’s
yield. To maintain the wafer’s flatness and stability during
manufacturing, it is often secured to the underlying PCB using
screws. Screw holes are strategically placed at the intersections
of reticles. The stress exerted by these screws can lead to a
certain degree of yield degradation in the areas surrounding
the holes. Similarly, TSVs, which involve drilling holes in the
center of the reticle and filling them with conductive material
for electrical interconnections between silicon layers, can also
result in yield loss for nearby cores. The impact of screw holes
and TSVs on yield is depicted in Fig. 4.
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Fig. 4. Impact of Screw Holes and TSVs on Core Yield

As depicted in Fig. 4, the symbol dstr max denotes the
maximum distance over which a stress hole affects yield. The
impact of a stress hole on yield is modeled in Equation 2:

Y ieldstr = 1− lossstr ·
(
1− ds

dstr max

)n

(2)

where ds signifies the distance from the stress hole to the
nearest vertex of the core, lossstr indicates the rate of yield
loss attributed to the center of the stress hole, and n is a
nonlinear exponent that governs the spatial decay rate of stress-
induced yield degradation.

The model describing the impact of TSVs on yield closely
mirrors that of screw holes. TSVs must be created on the
wafer’s surface due to their functional requirements and in-
herent characteristics. Consequently, the area designated for
TSVs cannot overlap with the area allocated for a core. The
additional overhead is linked to the total number of TSVs,
which in turn is dictated by the bandwidth requirements of
stacked DRAM. The yield of cores situated within a distance
less than dTSV max from a TSV is affected, and this can be
quantified similarly to Equation 2.

In conclusion, the yield of a core can be determined by
consolidating all these elements, as outlined in Equation 3.

Y ieldcore = Y ieldMurphy × Y ieldstr × Y ieldTSV (3)
D. Core Redundancy

With the error model of an individual core established, we
can extend the calculation to determine the yield at both the
reticle and wafer levels. Considering the substantial drop in
overall yield that may occur when integrating numerous cores
onto a single wafer, implementing appropriate redundancy
mechanisms becomes essential to attain an acceptable yield
target. A commonly employed strategy is to designate a
portion of the cores as redundant, enabling them to substitute
defective cores as required [26]. Assuming a reticle contains p
operational cores and n redundant cores, the yield at the reticle
level can be computed using Equation 4, where Ycore denotes
the yield of individual cores within the reticle. Similarly, the
wafer level yield can be further calculated using the reticle
level yield.

YPS =

p+n∑
i=p

(
p+ n

i

)
Ycore

i(1− Ycore)p+n−i (4)

In setting a yield target, the selection of the percentage of
redundant cores is critical, as this can lead to increased area
overhead and a reduction in effective computational capability.
This decision can also impact the selection of architectural
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parameters during DSE. Furthermore, it is crucial to acknowl-
edge that the choice of integration technique during DSE
significantly influences yield. For example, Dojo’s adoption
of the known-good-die technique may lead to higher yields
compared to Cerebras’s die-stitching method. The disparity in
these approaches can influence the overall yield outcomes, as
well as the DSE results.
E. Design Constraints

Prior to initiating the exploration process, it is prudent to
establish appropriate design constraints. This step helps in
precluding invalid design solutions and enhancing the overall
efficiency of the exploration. Key constraints that should be
considered are discussed in this subsection.
Area Constraint: The area of the reticle and wafer cannot
exceed the limits of the lithograph and silicon substrate.
Power Constraint: Considering power delivery and thermal
dissipation capabilities, the power density of WSC cannot
exceed the pre-determined threshold.
Yield Constraint: Considering the reserved redundant cores,
WSC must meet the yield requirement to ensure manufacturing
feasibility and cost efficiency.
SRAM Constraint: Some combinations of SRAM configura-
tions are infeasible from the SRAM Compiler.
Stress Constraint: The area for stacking DRAM TSV holes
should be less than the pre-determined area ratio (e.g., 1.5%)
of a reticle for stress considerations.

VI. EVALUATION METHODOLOGY

Fig. 5 illustrates the overview of evaluation methodology
in Theseus. Specifically, we employ a Workload Compiler to
determine the operating pattern and generate essential eval-
uation information. Based on this, we propose a hierarchical
methodology to reduce the scale of evaluation, which estimates
the performance and power through tile-level, op-level and
chunk-level evaluation.
A. Workload Compiler

As shown in Fig. 5, Workload Compiler takes the WSC
configuration and benchmark workload as inputs, and runs in
the following steps:

(1)Operator Graph Generation: Given a parallel strategy,
the LLM model is first segmented into model chunks. Work-
load Compiler constructs an operator graph for each chunk,
as well as the corresponding data transmission between model
chunks. Compute resources are evenly divided based on the
number of chunks, with each chunk assigned to its designated
compute resource.

(2) Partition and Allocation: After constructing the op-
erator graph, Workload Compiler partitions it into disjoint
subgraphs. Each subgraph is executed on the same compute
resource using temporal multiplexing (intra-op parallelism),
while different subgraphs are pipelined across multiple com-
pute resources (inter-op parallelism). By adjusting the parti-
tioning granularity, the compiler flexibly represents various
intra-op and inter-op parallel strategies [8]. The optimal par-
titioning scheme is determined based on evaluation feedback
while considering the SRAM capacity limits, and the number
of compute cores allocated to each subgraph is proportional
to its computational workload.

(3) Task Scheduling: We adopt a static scheduling approach
to efficiently map operators within each subgraph onto the al-
located logical compute cores. This process leverages dataflow
analysis, where the multi-level nested loops of each operator
are tiled along specific dimensions and parallelized across
multiple cores while preserving inter-core data dependencies.

(4) Mapping and Routing: The scheduled logical cores
are then mapped onto the physical core array at the operator
level, as illustrated by arrows in Fig. 5. We leverage the
state-of-the-art Gemini [9] framework to generate optimized
mapping strategies, minimizing congestion hotspots under the
given routing schemes. Workload Compiler then reles on
routing algorithms to determine efficient data transmission
paths between cores.

During the workload compiling process, we iterate through
all combinations of TP, DP, PP, and micro-batch sizes that
satisfy the memory capacity constraint and select the best-
performance parallel strategy based on the evaluation results.
B. Tile-level Evaluation

Tile-level evaluation focuses on the evaluation of tensor
operations on cores with fixed dataflow, which have been
extensively studied and analyzed in prior works [23], [41].
Similarly, we perform unrolling and tiling over specific loop
dimensions for tile-level evaluation, while considering the
impact of SRAM capacity on data reuse. We record the interval
of the tiled output for subsequent NoC estimation.
C. Op-level Evaluation

Based on the latency and communication patterns of individ-
ual cores from tile-level evaluation, op-level evaluation further
estimates the performance of NoC-based core array with both
inter-operator and intra-operator communications [8]. In op-
level evaluation, we propose two methodologies trading off
evaluation speed and accuracy for NoC estimation under
complex communication scenarios, including the analytical
model and GNN-based model.
Analytical Model. For fast estimation at the early iterations of
DSE, we propose an analytical model for the communications
on the core array within a chunk. Based on the output of
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Workload Compiler, we figure out the data transmission vol-
ume on each link of the NoC and calculate the communication
time between cores with the equivalent bandwidth. We label
the communication delays on each edge of the logic core
graph (Fig. 5(c)) and traverse the graph in topological order
to select the longest path as the overall latency of the chunk.
It is worth mentioning that the actual latency of a chunk
needs to take into account the overhead of DRAM access and
inter-chunk synchronization, which correspond to the edges
connecting virtual cores in Fig. 5(c). These overheads will be
considered in the chunk-level evaluation.
GNN-based Evaluation. To enhance the accuracy of NoC
estimation by considering the congestion, we propose a novel
GNN-based performance evaluation method. Compared to ex-
isting machine learning methodologies, our model effectively
addresses the issue of variable packet sizes and the inherent
heterogeneity in NoC bandwidth to support the evaluation
of LLM workloads on WSCs. The overall workflow of our
GNN-based evaluation method comprises three primary steps:
input graph construction, GNN-based prediction, and over-
all latency construction. We define the input graph for the
GNN as an attributed graph G = (V,E,XV , XE), where
V and E denote the sets of nodes and edges in the graph,
respectively. XV ∈ R|V |×dV and XE ∈ R|E|×dE represent
the feature matrices for nodes and edges, with dV and dE
indicating the number of feature channels for nodes and edges,
respectively. To accurately predict NoC traffic patterns and
capture congestion information, we annotate this graph using
critical information derived from the Workload Compiler and
WSC architecture parameters. Specifically, the core topology
graph generated during compilation (as illustrated in Fig-
ure 5 (d)) and associated annotations (including computation
latency, transmitted data volume, occupied physical links,
and transmission intervals) are encoded into the input graph
for the GNN. Information related to computation is encoded
into the node feature matrix XV , while transmission-related
information is encoded into the edge feature matrix XE .

Fig. 5 presents the architecture of our GNN model. Feature
generator consists of MLPs that project node features xv and
edge features xe to initial hidden states h0v and h0e. Graph
Convolution module aggregates neighboring information with
message passing mechanism [14] and update nodes’ hidden
states for T iterations. Similar to [25], message passing is
conducted on both the original graph G and its reversed
graph G̃ to model both upstream contention and downstream
backpressure. We briefly summarize the message passing
mechanism in Equation 5:

ht+1
v = α(htv +mt+1

v ) (5a)

mit+1
v =

∑
u∈N i(v)

ϕ(h0u→v))h
t
u (5b)

mot+1
v =

∑
u∈No(v)

ϕ(h0v→u))h
t
u (5c)

mt+1
v = Concat(mit+1

v ,mot+1
v ) (5d)

where α is activation function, and ϕ is a linear layer that

maps he to
|hv|
2
× |hv| matrix.

Congestion predictor predicts average channel waiting time

ye, which can reflect the traffic pattern of NoC. For edge e =
(u, v) that represents a physical link, ye is predicted by

ŷe = θ(Concat(hTu , h
T
v , h

0
e)), (6)

in which θ is a MLP.
With the predicted average channel waiting time ŷ, we can

reconstruct end-to-end transmission latency between cores. For
a packet with k flits, the average transmission latency t(k) can
be calculated by:

t(k) = k +
∑

{l|ϕ(l)=1}

ŷl, (7)

in which ϕ(l) is a Boolean indicating whether the transmission
utilizes link l. We apply the GNN model on all edges between
cores in the logic core graph (Fig. 5(c)). Similar to the
analytical model, we can reconstruct the overall latency of
a chunk by finding the critical path of the graph.
Cycle-accurate Simulation. We extend BookSim2 [20] for
cycle-level simulation and dataset generation. We design a
series of instructions and micro-instructions to describe the
compute, memory access and communication of WSC cores,
and connect the cores to Booksim routers. We add instruction
support for Booksim to inject and forward packets according
to the micro-instructions sent from the network interface of
cores. We argue that for accelerator cores, when dealing with
regular tensor operations, the latency for computation and
memory access is relatively deterministic. So we simplify the
estimation of computation and memory access latency inside
cores by analytical models.
D. Chunk-level Evaluation

Chunk-level evaluation further considers the data transfer
between chunks, including TP-induced collective communi-
cation, PP-induced cross-pipeline-stage communication, and
DP-induced weight update communication. Additionally, we
consider the traffic related to traditional off-chip DRAM access
at the chunk level. Despite the equitable partitioning of chunks
in terms of workload and hardware resources, the overhead
for off-chip DRAM access can be different due to the diverse
locations of reticles assigned to individual chunks. Considering
all inter-chunk communications and DRAM access demands,
we count the amount of data transmission for each inter-
reticle link and assess the communication latency based on
the available bandwidth. The DRAM access latencies are then
combined with op-level evaluation results to derive the overall
performance of individual chunks. Meanwhile, we consider the
pipeline efficiency based on micro batch size to calculate the
throughput on target workloads.
E. Area and Power Estimation
Area Estimation. We utilize the SRAM compiler to generate
various configurations of SRAM Macros along with their
height and width. We also implement MAC array in different
dataflows, NoC routers, and RISC-V core as the control unit
with Chisel based on Purlin [15]. The generated RTL is then
synthesized using Synopsys Design Compiler, and the netlist
is further input to DREAMPlace [27] for placement to obtain
the area of the core array within a reticle. In estimating
the inter-reticle distance and area overhead of inter-reticle
communications, we refer to Cerebras WSE2, Tesla Dojo, and
Nvidia GRS [51] for relevant information.
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Power Estimation. We adopt a methodology similar to Al-
addin [47], where we define a series of actions, including MAC
operations, NoC transmissions, inter-reticle communications,
and SRAM/DRAM accesses, etc., to estimate power consump-
tion. We utilize SRAM Compiler to obtain SRAM static power
and energy consumption for read and write operations. We
refer to Aladdin, Orion3.0 [21], as well as existing chiplet and
WSC designs [26], [40], [50], [51] for the power estimation
of computational logic, NoC components, and communication
modules. During the evaluation process, we record the number
of action calls to calculate dynamic power and combine it with
the static power of components to estimate power consumption
for WSC designs.
Component Estimator. To reduce evaluation time for each
sampled design and avoid redundant estimations for identical
module configurations, we develop the Component Estimator,
which constructs a dataset of area and power estimates for
WSC basic modules across various configurations. During the
DSE process, evaluation models directly retrieve and combine
area and power values from this dataset to compute the
overall area and power consumption of WSCs. The area-
power table can be dynamically updated as needed to ensure
both efficiency and accuracy in evaluations. Additionally, the
Component Estimator supports optional user-provided inputs,
allowing designers to incorporate custom area and power data
when available, further improving the estimation accuracy.

VII. SPACE EXPLORER DESIGN

To efficiently explore the design space of WSCs for LLMs,
we propose a multi-fidelity multi-objective Bayesian optimiza-
tion (MFMOBO) algorithm. By leveraging the informative
nature of low-fidelity objective functions to enhance high-
fidelity optimization, MFMOBO can attain faster convergence
and better results, especially in the early iterations.

Algorithm 1 Pseudo-code for the MFMOBO Algorithm
Input: A, f0, f1, d0, d1, k, N0 and N1;

1: Init the prior of f0: D0 ← sample(f0,A, d0)
2: Init the prior of f1: D1 ← sample(f1,A, d1)
3: (D,M, f, χ)← (D1,M1, f1, χ1)
4: for i← 0 until N0 +N1 − d0 − d1 do
5: if i = N1 − d1 do
6: (D, f, χ)← (D0, f0, χ0)
7: if i = N1 − d1 + k do
8: M←M0

9: Update M0, M1 to fit D0, D1 respectively
10: Calculate the posterior p(y|x,D) with M
11: xi ← argmaxx(EHV I(A, p(y|x,D)))
12: Evaluate xi : yi ← f(xi)
13: Update the prior: D← D ∪ (xi, yi)
14: Calculate the Pareto set: χ← Pareto set of D
15: end for
16: Return the current Pareto set χ.

Algo. 1 outlines the overall procedure of our proposed MF-
MOBO methodology. Initially, we sample and evaluate d0 and
d1 points to build two prior datasets D0 and D1, corresponding
to the evaluation functions of f0 (high fidelity) and f1 (low
fidelity). We then iteratively explore the design space with N1

TABLE I
CANDIDATE VALUES FOR WSC ARCHITECTURE PARAMETERS

Core Reticle
dataflow WS, IS, OS inter reticle bw 0.2-2 (× Bisection BW)
mac num 8-4096 stacking DRAM bw 0.25-4 (TB/s/100mm2)
buffer size 32-2048 (KB) stacking DRAM size 8-40 (GB)
buffer bw 32-4096 (bit/cycle) Wafer
noc bw 32-4096 (bit/cycle) integration style Die Stitching / InFO-SoW

inter wafer bw 100GB/s/Network Interface
off chip mem bw 160GB/s/MEM Controller

trials of f1 and N0 trials of f0 in total. In each iteration, we
first update the surrogate models (M0, M1) to fit the datasets,
and then calculate the posterior distribution of the entire space.
In Theseus, we jointly optimize the performance and power of
WSCs on LLM workloads to find the Pareto optimal designs.
Thus we use the hypervolume as the optimization indicator and
iteratively select design points with the maximum Expected
Hypervolume Improvement (EHVI). Specifically, during the
first N1 trials, we evaluate the points with f1 and predict the
next promising point xi with the surrogate model M1. For the
following k iterations from N1−d1 to N1−d1+k, we switch
to f0 as the evaluation function while still predicting the EHVI
of candidate design points with M1. This process utilizes the
information of the low-fidelity surrogate model to guide the
initial search of high-fidelity optimization, and the selected
design points are added to dataset D0 for surrogate model
M0 to update. Finally, we switch to M0 for EHVI calculation
during the rest of the iterations.

In Theseus, we utilize the Gaussian Process (GP) as the
surrogate model. For hypervolume calculations, we define the
reference point with a throughput of 0 and the power as the
peak power threshold of the WSC system.

VIII. EXPERIMENT

A. Experimental Setup
Design Space Setup. To determine the architecture parameters
for our proposed WSC designs, we select candidate values
as listed in Table I. Considering power delivery and thermal
constraints, we set a peak power threshold of 15 kW per
wafer, corresponding to a power density of 32.5W/cm2. This
threshold is derived from prior prototype implementations [40]
and is established to ensure that the junction temperature
remains below 105◦C in dual-heatsink WSC configurations
while maintaining feasible power delivery. We consider the
clock frequency of 1 GHz. For SRAM, we assume a voltage
of 0.9V and use the ssg process for area and power estimation.
In the NoC design, routers operate at 1V and support 8
input virtual channels (vc) and 4 buffers per vc, without
physically shared buffers. We consider the area overhead for
inter-reticle communication as 3900µm2/Gbps for RDL, and
1300µm2/Gbps for offset exposure. For stacking DRAM,
TSV size and pitch are set to 5µm and 15µm [44], with
1Gbps/TSV DRAM bandwidth. To model the trade-off be-
tween stacking memory capacity and bandwidth, we select
several existing configurations and perform linear fitting. We
set the area constraint of 26mm× 33mm for reticles [5] and
consider 12 − inch wafer with 215mm × 215mm available
area. All the area and power data are scaled to 14nm according
to the scaling factors in [52].

For yield modeling, we set a yield requirement of 0.9, and
consider the average defect density as D0 = 0.1/cm2 [4].
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In the Murphy model, the defect density is assumed to
follow a symmetric triangular distribution centered at the
mean defect density D0 [33]. For stress holes, the yield
loss rate and the maximum influence distance are set to
0.1 and 1mm, respectively. We set n = 1 to model the
linear decay of stress-induced yield degradation. Given the
variability in yields across different core locations, we employ
Monte Carlo sampling to estimate the yield of the reticle with
redundant cores. For redundancy-based yield enhancement
with minimum performance and area overhead, we refer to
the design of Cerebras [24] to add extra connections in each
row of the core array. These additional connections can be
dynamically configured to reroute data and computation when
a core experiences a fault, enabling seamless and efficient core
replacement. For the consideration of the KGD technique, we
directly take the reticle yield as the yield for WSCs when
employing inFo-SoW integration, while further calculating the
yield for die-stitching WSCs with reticle yields.
LLM Benchmarks. We select a wide range of LLMs and
scale the number of attention heads, hidden dimensions, and
layers according to the setups in Megatron-LM [34], GPT3 [7]
and Zero-Infinity [43]. We consider a fixed sequence length
of 2048 and perform activation checkpoint with a granularity
of 2 layers. For inference, we consider KV cache optimization
and assume a constant sequence length of 2048 for both input
and output, with a batch size of 32. During the DSE process,
we set the total area of the WSCs to be consistent with that
of the corresponding number of GPUs.
GNN Training Setup. To generate the dataset for GNN
model training and validation, we randomly select a series
of WSC configurations and LLM benchmarks. We generate
the execution graph with Workload Compiler and collect the
communication traces by evaluating the benchmark workloads
with CA simulation. By meticulously tracking the transmission
of packets within the NoC, we construct the transmission
feature vectors, which serve as the regression targets for each
sample in our dataset. Overall, our generated dataset comprises
a total of 3000 samples. The GNN model is implemented and
trained using PyTorch and DGL [53]. We split the dataset into
training and testing sets with proportions of 90% and 10%,
respectively. For the regression task, we adopt the smooth
L1 loss function. The Adam optimizer [22] is employed for
parameter optimization. The learning rate is initialized at 0.001
and reduced by half whenever the loss plateaus. Hyperparame-
ters governing GNN model size should be carefully calibrated,
as excessive parameters risk overfitting on limited training
data, impairing generalization to unseen transmission patterns;
whereas insufficient parameters degrade prediction accuracy
and hinders the efficiency of DSE process. To balance these
concerns, the hidden state sizes are set to |hv| = |he| = 64
for both nodes and edges; T = 2 rounds of message passing
are conducted, where all rounds share the same edge feature
projector ϕ and adopt ReLU as activation function α.

B. Performance Model Verification

To ensure the reliability of our exploration results, we
first validate the accuracy of our performance model. We
collect publicly available performance data from both H100

TABLE II
PERFORMANCE MODEL VERIFICATION*

Platform Task Config Performance Evaluation Results Error

H100
Cluster

Llama3-70B
(Inference)

(128,128) 5837.9 5802.5 0.6%
(128,2048) 5072 5361.2 3.7%
(2048,128) 670.7 669.5 0.2%

(2048,2048) 2386.7 2308.3 3.3%

Cerebras
CSX System

Llama-3.3 70B
(Inference) - 2200 2080.7 5.4%

Llama-3.3 405B
(Inference) - 969 928.4 4.2%

* Due to limited available details regarding cluster and software configurations, we make
reasonable assumptions in our evaluation.
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Fig. 6. Evaluation Speedup and Accuracy Comparison

clusters [6] and the Cerebras System [2]. We then adjust
hardware configurations and workloads in the Theseusframe-
work to generate corresponding performance results. For GPU
clusters, we disregard the mesh-based NoC topology and in-
stead rely on empirical utilization metrics to evaluate compute
and communication performance. Table II presents the actual
performance and evaluation results across different platforms
and workload configurations. The results demonstrate that our
evaluation maintains an error margin within 5.5% compared
to publicly reported data, confirming its high accuracy. The
errors may come from inaccuracies in utilization estimates, as
well as overheads related to kernel launches and the software
stack. Despite these factors, our performance model remains
sufficiently accurate to meet the needs of early-stage DSE. Fur-
thermore, DSE focuses more on relative relationships rather
than absolute values. Therefore, in subsequent validations, we
further analyze the ordinal association of the evaluation results.

Fig. 6 compares the speedup and accuracy of our evalua-
tion models across 16 growing-scale benchmarks where CA
simulation is refered to as the ground truth. As depicted in
Fig. 6 (a), the evaluation time with CA simulation increases
significantly with the growing scale of workloads. In contrast,
both the analytical model and GNN-based evaluation model
maintain stable evaluation times across different workloads.
Compared to CA simulation, GNN-based evaluation method-
ology demonstrates a speedup ranging from 33.2× to 753.5×,
with an average speedup of 220.2×. Fig. 6 (b) shows the
evaluation accuracy, where CA simulation results are referred
to as the ground truth. By aggregating congestion-relevant
information, GNN-based evaluation outperforms the analytical
model on all benchmarks, achieving an average error rate
of 7.44% compared to 20.29% for the analytical model. To
further validate the impact of errors from the two evaluation
models on DSE results, we calculate and analyze Kendall’s
τ (KT) coefficient of the analytical model and GNN-based
evaluation in comparison to CA simulation results. KT co-
efficient measures the ordinal association between the two
evaluation methodologies and ground truth. In practice, a KT
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Fig. 7. Optimization Results Comparison

correlation above 0.9 is efficient for early-stage exploration of
a design, while a KT correlation above 0.7 can generally bene-
fit multi-fidelity optimization. As depicted in Fig. 6 (b), the KT
coefficient of the analytical model gradually decreases from
0.9 to 0.73 with increasing model size, while for GNN-based
evaluation, the KT coefficient remains consistently above 0.9.
Although both the analytical model and GNN-based evaluation
model deviate further from the ground truth as the workload
scale increases, the KT coefficient results indicate that they
can still be efficient for the DSE process.

C. Explorer Efficiency Analysis

To assess the efficiency of our proposed MFMOBO method-
ology, we compare MFMOBO with random search and tra-
ditional multi-objective Bayesian optimization (MOBO). We
employ the GNN-based evaluation model for both random
search and MOBO while applying the analytical model to-
gether with GNN in MFMOBO. Both random search and
MOBO iterate 200 times, whereas MFMOBO performs 100
iterations for initialization with the low-fidelity analytical
model and takes the remaining time for high-fidelity itera-
tion. For both MOBO and MFMOBO, we select an initial
set with 6 design points. Fig. 7 presents the optimization
results for GPT-1.7B, GPT-175B, and GPT-530B, with similar
trends observed for all benchmark LLMs. Our experiments
are conducted on a server equipped with an Intel Xeon E5-
2690 CPU and an NVIDIA Tesla V100 (32GB) GPU, with
all experiments repeated 10 times to calculate the average
hypervolume improvement over optimization iterations. The
total runtime for both MFMOBO and MOBO averages about
350 minutes. During the Bayesian Optimization process, the
major time overhead consists of two components: (1) BO
algorithm updates, including EHVI computation and GP pa-
rameter updates. (2) Design point evaluation, using either the
analytical model or GNN-based evaluation. Thanks to the
efficient evaluation speedup in Theseus, design point evalu-
ation takes only about 27 minutes, with the remaining time
dedicaded to Bayesian optimization updates. This is primarily
due to the O(n3) complexity of kernel parameter updates,
which increases with the number of iterations. In contrast,
random search completes in just 30 minutes, as it primarily
rely on design point evaluations. However, despite its shorter
runtime (only 10% of the time required by BO methods),
random search performs significantly worse in hypervolume
improvement and fails to achieve consistent improvement
over iterations. Compared with vanilla MOBO, our proposed
MFMOBO achieves an average 2.1× faster convergence to the
same hypervolume on all LLM benchmarks, and on average

42% hypervolume improvement within the same iteration time,
resulting in optimal designs that closely approximate the real
Pareto frontier. By leveraging the advantages from enhanced
convergence and accelerated evaluation speed, Theseus attains
an overall speedup of over 400× compared with MOBO with
CA simulation.

IX. CASE STUDIES AND INSIGHTS

A. Core Granularity Tradeoffs
In the design of WSCs for LLM workloads, the granularity

of the core emerges as a critical factor. We define the compu-
tational power of the core (in FLOPS) as a representative mea-
sure of core granularity and explore combinations of all other
parameters (i.e., SRAM capacity, NoC bandwidth, etc.) to find
the optimal design in performance and energy consumption.
Fig. 8 illustrates the trend of training throughput and Energy-
Delay Product (EDP) concerning the computational power of
cores for LLMs of different scales.

Generally, large cores tend to exhibit better area and energy
efficiency than small cores, since they replace NoC-based
interconnections between small cores with fixed datapaths.
Besides, large cores can reduce the number of nodes in the
NoC, simplifying routing complexity and alleviating NoC traf-
fic. However, large cores face challenges related to utilization,
module efficiency, and yield considerations.
Utilization. Small cores generally offer more scheduling flex-
ibility, leading to better resource utilization. This is because
within a core, the computation is operated in fixed dataflow,
which relies on the parallelism of specific dimensions to
fully utilize all processing units (MACs). However, in LLM
workloads, the dimensions of the operators are generally large
enough to effectively utilize computational resources within
individual cores across various dataflows, as long as the SRAM
capacity meets the requirement of data reuse. Within our
candidate range of core granularity, the design of large cores
does not pose utilization challenges.
Module Efficiency. Effectively designing large cores with
high computational power necessitates a corresponding in-
crease in SRAM capacity and NoC bandwidth. However,
both large-capacity SRAM designs and high-bandwidth NoC
routers are inefficient in area and energy consumption, which
may contribute to the decrease in throughput and EDP when
core computational power surpasses a certain threshold.
Yield Consideration. Larger cores exhibit lower yields and
incur higher overhead due to redundant cores and extra con-
nections. Consequently, the increase in core granularity may
lead to a decline in both performance and energy efficiency.

In our experimental setup, the optimal computational power
for cores falls within the range of 512G-1TFLOPS.
Takeaway 1: For LLM workloads, WSC can be designed
with large cores, while considering utilization, module effi-
ciency and yield requirements.

B. Integration Style Tradeoffs
In Fig. 8, we also compare the performance under inte-

gration styles of die stitching and Info-SoW. Compared to
die stitching integration, Info-SoW introduces a larger area
and power overhead for inter-reticle communication. However,
since know-good-die (KGD) technology can only be applied to
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InFo-SoW, InFO-SoW can always provide better performance
and power consumption than die stitching due to this flexibility
in yield guarantee. Meanwhile, for both integration styles,
WSC designs should balance between the benefits of enhanced
inter-reticle bandwidth and the introduced area overhead af-
fecting computational resources. In our experimental setup,
optimal inter-reticle bandwidths generally fall between 0.5×
and 1× of the bisection bandwidth of a reticle.
Takeaway 2: Info-SoW with KGD can outperform offset
exposure due to less yield overhead, despite the larger area
overhead for inter-reticle communication.

C. Reticle Granularity Tradeoffs

Similar to core granularity, we refer to the peak computa-
tional power of a reticle as the measure of reticle granularity.
In exploring the design of reticle granularity, we generate
different configurations of cores, as well as feasible core array
sizes under the reticle area constraint to calculate the compu-
tational power of the reticle. Fig. 9 shows the optimal training
throughput under given reticle granularities for GPT3 on WSC
systems. As shown in Fig. 9, the computational power of a
reticle varies from tens of GOPS to hundreds of TOPS. Over-
all, larger reticle granularity tends to have better performance,
since inter-reticle communication introduces higher overhead
in latency, area, and energy consumption compared to NoC.
Meanwhile, larger reticle granularity can lead to reduced TP
size, which reduces the amount of data transmission in collec-
tive communications. To further analyze the results, we cluster
the designs with the same core granularity, where different
reticle granularity reflects the core array size. We label the
optimal reticle design under each core granularity, as well as
the largest scale design within the reticle area constraint. It
can be observed that the best performance designs are mostly
not associated with the largest array size that approaches the
area limit of reticles. As the number of cores increases, the
overhead of redundant cores and extra connections also rises
which can impact the achievable computational power under
the same area.

In our experiment setup, the performance optimal reticle
granularity for GPT3 is 144TFLOPS, with a core array size
of 12 × 12 and a core granularity of 1TFLOPS. Notably, the
optimal reticle granularity design typically occupies 50%-60%
of the reticle area limit across different core granularities.
Takeaway 3: WSC reticle scale should trade between the
redundancy ratio of cores and the overhead of inter-reticle
connections, instead of going for the reticle limit.
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D. Speedup Analysis for LLM Inference

Fig. 10 depicts the inference speedup of WSCs over the
H100 baseline [3] with the same area. Fig. 10(a) shows the
results on GPT-1.7B when all necessary data (weights, inputs,
and KV-cache) are stored in the SRAM of WSCs. The x-axis
illustrates the available on-chip SRAM bandwidth per WSC
while meeting SRAM capacity requirements. WSC achieves
an average speedup of 5.5× with multi-query attention (MQA)
optimization, and 16.9× without MQA. Notably, the LLM
decoding stage is memory-bound on GPUs, particularly under
small batch sizes, which leads to significant under-utilization
of compute resources. When the SRAM capacity of the
WSC is sufficient, a large SRAM bandwidth ensures optimal
utilization of computational resources and benefits the load of
KV-cache. However, increasing either capacity or bandwidth
results in an increase in the SRAM area, which may influence
the area of computational resources. This explains the variation
of speedup and further motivates our exploration.

Fig. 10(b) shows the inference speedup and latency break-
down of GPT-175B with stacking DRAM. Within the stress
constraint, stacking DRAM bandwidths are varied from 0.25
to 4 TB/s/100mm2. As for comparison, the HBM bandwidth
of H100 is approximately 0.2 TB/s/100mm2. The increased
stacking DRAM bandwidth benefits both the decoding stage
and KV-cache access, while achieving up to 6.8× speedup over
GPU baseline with MQA and 9.8× without MQA. However,
as bandwidth increases, the area of the TSV region grows,
diminishing the effective computational power of the WSC and
affecting the yield. This can lead to an increase in the latency
of the prefilling stage, which may become the performance
bottleneck. Meanwhile, the reduction in stacking memory
capacity can result in increased inter-reticle communication,
necessitating careful design of communication bandwidth to
ensure the overall performance improvement.
Takeaway 4: The high bandwidth of both on-chip SRAM
and stacking DRAM can efficiently speedup the inference
for LLMs with different parameter scales, while the result-
ing capacity reduction can be alleviated through the efficient
inter-reticle communication of WSCs.

E. Heterogenous Improvement

Table III presents the speedup of GPT-175B inference
with various levels of heterogeneity. To address hardware
heterogeneity, we separately optimize the performance of the
prefill and decode stages during the exploration process, while
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TABLE III
LLM INFERENCE SPEEDUP WITH HETEROGENEOUS

Stacking DRAM BW
(TB/s/100mm2)

Speedup w/o MQA Speedup w/ MQA
Core Reticle Wafer Core Reticle Wafer

0.25 1.44× 1.47× 1.09× 1.40× 1.46× 1.08×
0.5 2.89× 2.84× 2.10× 2.84× 2.75× 2.04×
1 5.89× 5.33× 3.95× 5.84× 4.93× 3.65×
2 8.91× 9.51× 7.04× 7.66× 8.17× 6.05×
4 12.04× 12.84×* 9.51× 8.72× 9.31×* 6.89×

* The searched best-performing configuration for the decode stage is 512GFLOPS with
32KB SRAM per core, 9×9 cores per reticle, with 0.6TB/s inter-reticle bandwidth, and
10×7 reticles per WSC.

considering the inter-stage KV-cache transfer overhead. By
adjusting the resource allocation between the two stages,
we can achieve the optimal overall throughput. As shown
in Table III, with the same stacking memory bandwidth for
the decode stage, the heterogeneous design can yield higher
inference speedup compared to the exploration results in
Fig. 10. This is primarily attributed to the augmentation of
hardware computational power and resource utilization during
the prefill stage. Due to the impact of increased stacking
memory bandwidth on the effective area and yield of reticles,
the computational power of reticles optimized for the prefill
stage can exceed that of reticles optimized for the decode
stage by over 1.6× under the same area. We also compare
the performance improvements resulting from different levels
of heterogeneity in Table III, and highlighted the optimal het-
erogeneous granularity for each configuration in bold. Due to
limited inter-wafer bandwidth, KV-cache transfer can become
the bottleneck when applying wafer-level heterogeneity. For
core-level heterogeneity, the flexible scheduling and resource
allocation of compute-intensive and memory-intensive oper-
ators on the same reticle enables higher resource utilization.
However, it also introduces an increased volume of both intra-
reticle and inter-reticle transmissions, as well as overhead in
compilation and control. Reticle-level heterogeneity strikes a
favorable balance between these factors, although it may pose
challenges to existing integration technologies.
Takeaway 5: Reticle-level heterogeneity can provide the
best tradeoff for LLM inference between hardware utiliza-
tion of both stages and introduced overhead.

F. DRAM Approach Analysis

In Fig. 11, we visualize the overall design space for GPT-
175B training. Each point represents a sampled design con-
figuration during our iterative exploration process, where red
points correspond to designs with traditional off-chip DRAM
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Fig. 11. Design Space for GPT-175B Training. The searched best-performing
configuration is 1TFLOPS with 128KB SRAM per core, 12×12 cores per
reticle, with 1.5TB/s inter-reticle bandwidth, and 9×6 reticles per WSC.

approach and blue points correspond to those utilizing stacking
DRAM. From the comparison of the Pareto frontiers, it can be
observed that WSCs can benefit from stacking DRAM in both
performance and power efficiency. Traditional off-chip DRAM
necessitates access through the memory interfaces around
the wafer, raising the transfer pressure of inter-reticle com-
munications. Long-range DRAM-access-induced data transfer
from the WSC edge can become the performance bottleneck,
introducing additional power consumption, with implications
on the available inter-reticle bandwidth.
Takeaway 6: Stacking memory allows for better scaling
than off-chip memory due to its higher bandwidth, improved
power efficiency, and reduced communication overhead.

G. Design Space Exploration Results

We search for Pareto Optimal WSC configurations for both
training and inference across various LLM benchmarks. We
calculate the area of these configurations with our area model,
and find that most of these configurations occupy around 50%
- 70% of the 215mm× 215mm wafer limit. Specifically, the
heterogeneous reticles in Table III account for 55.2% (with
16.3% for decode stage reticles), while the design in Fig. 11
occupies 69.2%.
Takeaway 7: The scaling up of a single WSC does not
always need to reach the wafer limit for LLM workloads.

To demonstrate the effectiveness of Theseus framework,
we compare the performance and power of searched Pareto
optimal WSCs with existing designs including H100 [3],
Cerebras WSE2 [26] and Tesla Dojo [10]. All comparisons
are made under the same area, with both area and power
values for existing designs scaled to 14nm. For H100, we
ignore yield requirements and the area overhead for NVLink
Serdes. Table IV presents several key design points from
Fig. 11, along with the system performance, total power
consumption, and performance per watt for both the best-
performing WSC design and existing architectures. The re-
sults indicate that our optimized WSC design achieves the
highest energy efficiency. This trend is further reflected in
Fig. 11, where our Pareto frontier exhibits a lower slope
compared to existing designs, indicating a more favorable
energy-performance trade-off. Additionally, Fig. 11 shows that
without power density constraints, even higher-performance
WSC designs can be explored. This further underscores the
critical importance of power management in WSC design.
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TABLE IV
DSE RESULTS COMPARISON

Design Cerebras
WSE2

Tesla
Dojo

NVIDIA
H100

Best Perf.
WSC Design

Core-level Core Node SM Core
Compute(TFLOPS) 0.008 1 7.5 1
SRAM size(KB) 48 1250 256 128
NoC BW(bit/cycle) 32 1024 - 256
Reticle-level Reticle D1 chip GPU Reticle
Core Array Size 66×154 18×20 132 12×12
Inter-Reticle BW(TB/s) 1.75 2 0.9 1.5
Wafer-level WSE Dojo GPU WSC
Reticle Array Size 12×7 5×5 1×1 9×6
Performance(token/sec) 13793.21 207420.95 172216.68 362987.52
Power(kW) 35.47 448.72 414.81 545.05
Performance/Power 388.87 462.25 415.17 665.97

Overall, for the training tasks across our LLM benchmarks,
Theseus can find Pareto optimal WSC designs that outperform
the H100 cluster by an average of 62.8% in performance (with
the same or lower power) and 38.6% in power (with the same
or higher performance), thanks to the high bandwidth and low
power inter-reticle communication, efficient stacking DRAM
and effective compute utilization. Meanwhile, the results ob-
tained by Theseus outperform Cerebras WSE2/Tesla Dojo
by up to 73.7%/46.5% in performance and 42.4%/31.7% in
power, respectively. In comparison with existing WSC designs,
our searched Pareto optimal designs benefit from the proper
selection of core granularity, inter-reticle bandwidth, and the
effectiveness of stacking DRAM. For LLM inference tasks,
WSC designs improve up to 23.2×/15.7× for performance and
power with sufficient SRAM capacity, and up to 12.9×/11.2×
with stacking DRAM.

H. Cost Analysis

Compared to traditional chips like GPUs, the manufacturing
cost of WSCs poses a significant challenge. To address this,
we conduct a cost analysis of WSC fabrication, taking into
account key factors such as cost per wafer, yield, DRAM
stacking cost, and integration cost. Based on open-source
data [1], [12], [32] and insights from our industry collaborator,
the cost of a 14nm 12-inch wafer is approximately $4000,
while DRAM stacking and InFo-SoW integration each add
an additional $5000 per wafer. Given that the H100 GPU’s
HBM occupies an area equivalent to a reticle, we estimate
that the cost of a WSC is approximately 1.5× that of a GPU
with the same area. Our DSE results indicate that WSCs
achieve a 2.1× performance improvement in training tasks
and a 12.8× improvement in inference tasks. Consequently,
in terms of performance per cost, WSCs outperform GPUs
by a factor of 1.4× for training and 8.5× for inference.
Furthermore, as discussed in our previous analysis, WSCs also
demonstrate better performance per watt compared to GPUs,
further reinforcing their advantages in cost efficiency.

I. Sensitivity Analysis

During the DSE process, we make several yield modeling
assumptions, including average defect density, yield loss rate,
linear decay of stress impact, and redundancy-based yield
enhancement. In this section, we conduct a sensitivity analysis
on these assumptions. Since yield primarily affects trade-
offs at the core granularity level, we systematically vary
these parameters and re-examine the optimal performance

N
or

m
al

ize
d 

Th
ro

ug
hp

ut

(a) (b) (c)
1.2

1

0.8

0.6

0.4

0.2

0

Core Computational Power (GFLOPS)

D0 = 0.05
D0 = 0.10
D0 = 0.15
D0 = 0.20

YLR = 0.1, n=0.5
YLR = 0.1, n=1.0
YLR = 0.1, n=2.0
YLR = 0.5, n=0.5
YLR = 0.5, n=1.0
YLR = 0.5, n=2.0

Redundancy-Based
Si-Kintsugi

Fig. 12. Sensitivity Analysis Exploration Results

trends across different core granularities. All experiments are
performed using GPT-175B as the workload.

Fig. 12 presents the exploration results. In Fig. 12(a), we
vary the average defect density D0 from 0.05 to 0.2 to
simulate different process technologies and maturity levels.
In Fig. 12(b), we adjust the yield loss rate (YLR) and the
nonlinear exponent n to explore more realistic stress im-
pacts. The results indicate that modifying these yield-related
assumptions does not alter the overall trend of the design
space exploration. However, when yield is more severely
affected, the increased demand for redundant resources leads
to performance degradation.

In Fig. 12(c), we replace the redundancy-based yield en-
hancement approach with Si-Kintsugi [16], a software-centric
repairing method. Under this approach, all non-defective cores
are utilized for computation without redundant resources,
thereby do not introduce additional area overhead. Despite
this change, core-level yield still impacts the peak compu-
tational capacity of the chip, leading to similar DSE trends
as redundancy-based methodologies. The key difference, how-
ever, lies in the increased complexity of on-chip communi-
cation, as defective cores must be bypassed during routing
without the aid of redundant bypass links. Additionally, this
method introduces higher compilation and runtime overhead,
which may further affect overall system efficiency.

X. CONCLUSION

In this paper, we propose Theseus, a DSE framework
designed to facilitate high-efficiency WSC design for LLM
workloads. We construct a comprehensive design space for
WSCs considering various design constraints. We propose
hierarchical evaluation methodologies for efficient evaluation
of design points and design a MFMOBO methodology to
efficiently explore the WSC design space. Experimental results
demonstrate that Theseus significantly enhances the efficiency
of the DSE process, and the searched Pareto optimal WSC
configurations can outperform existing designs. Furthermore,
we analyze the exploration results and provide insights to
design efficient WSCs for LLMs.
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