
DATIS: DRAM Architecture and Technology
Integrated Simulation

Shiyu Xia
Shanghai Jiao Tong University

Shanghai, China

xiashiyu@mail.sjtu.edu.cn

Chen Zhang*
Shanghai Jiao Tong University

Shanghai, China

Guangyu

chenzhang.sjtu@sjtu.edu.cn
* Corresponding Author

Sun
Peking University

Beijing, China

gsun@pku.edu.cn

Guohao Dai
Shanghai Jiao Tong University

Shanghai, China

daiguohao@sjtu.edu.cn

Runsheng Wang
Peking University

Beijing, China

rswang@pku.edu.cn

Zhigang Ji*
Shanghai Jiao Tong University

Shanghai, China

zhigangji@sjtu.edu.cn
* Corresponding Author

Ru Huang
Peking University

Beijing, China

ruhuang@pku.edu.cn

Abstract—Recent advances in DRAM technologies and large-
dataset applications in data centers make both academic and
industrial researchers eager to explore DRAM’s novel usage
and cross-disciplinary DTCO (design and technology co-design)
spaces, as illustrated by recent studies of the PIM (Processing-
In-Memory) or RowHammer effect etc. This evolving landscape
has created a pressing need for systematic testing and validation
of those emerging DTCO studies. However, previous DRAM
simulators have lacked joint modeling of device and architec-
ture, impeding effective simulation of these DTCO designs. To
address this gap, we introduce DATIS (DRAM Architecture and
Technology Integrated Simulator), a tool that effectively connects
architectural design and the complexities of DRAM technology.
DATIS addresses two critical challenges: abstracting technology
intricacies and establishing connections between architectural
activities and device-level process structures. This versatile tool
empowers researchers to unlock the latent capabilities of DRAM
and provides manufacturers with a platform to experiment with
new processes and architecture co-design. To the best of our
knowledge, DATIS is the first DRAM simulator in academia that
integrates architecture and technology modeling. We build DATIS
upon Ramulator, a well-known open source DRAM simulator for
architecture-level modeling, and thus it can support a wide range
of DRAM specifications, including DDRx, LPDDR5, GDDR6, and
HBM2&3 etc. Our experiments demonstrate DATIS’s efficacy and
precision through three compelling case studies, addressing pivotal
facets of DRAM technology, including storage, reliability, and
computation.

Index Terms—DRAM, Simulation, DTCO, Architecture, Tech-
nology

I. INTRODUCTION

DRAM has long served as the cornerstone of main mem-

ory architecture. As DRAM’s potentials and capabilities are

increasingly harnessed, it is playing an ever more important

role in data centers and large-dataset applications. Academic

and industrial researchers have proposed various Design and

Technology Co-Design (DTCO) methods aimed at optimizing

system reliability [1], [2], accelerating application kernels [3]–

[5], and enhancing architectural performance and energy effi-

ciency [6]–[8].

One such innovation is Computing-in-Memory (CIM) [4],

[9], which leverages the analog properties of DRAM tech-

Fig. 1. Overview of the DATIS Framework.

nology to accelerate data center workloads. CIM enables the

execution of logic operations like AND and OR entirely within

the DRAM by utilizing charge sharing on memory bit-lines.

However, due to manufacturing imperfections, variations in

DRAM cells can result in non-uniform behavior across the chip

[10]. These variations can lead to partial execution of operations

or erroneous results. Another example is the RowHammer

effect, a DRAM failure mechanism that occurs after frequent

accesses to the same bit lines. This phenomenon is often

attributed to substrate leakage and manufacturing defects. As

DRAM technology scales and chip densities increase, these

technology- and process-dependent mechanisms emerge, pos-

ing both opportunities and threats to DRAM operation.

However, DRAM simulators have struggled to keep pace

with these rapid developments. While there have been sev-

eral open-source DRAM simulators [11]–[14] developed for

various memory architectures, they are typically built on stan-

dard constraints, which primarily model DRAM’s system and

534

2025 International Symposium of Electronics Design Automation

979-8-3315-3695-4/25/$31.00 ©2025 IEEE

architectural behaviors. Researchers often resort to ad-hoc
modifications to simulate the aforementioned novel, undocu-

mented operations or DTCO effects. Such simulations devi-

ate significantly from real-world scenarios. This gap between

architectural models and technology models hinders effective

exploration and study of different aspects of the DRAM design

space.

As a solution, we introduce DATIS, a DRAM Architecture

and Technology Integrated Simulator, which is designed to

comprehensively characterize the joint impact of architectural

activities and technology features. Our aim is to provide

a systematic methodology for testing and validating cross-

disciplinary DTCO designs for various DRAM technologies,

catering to both industrial evaluation and academic research.

Developing a scalable testing methodology involves two

key challenges. First, an appropriate abstraction of technology

nodes and manufacturing processes is crucial, as they signif-

icantly affect DRAM characteristics. DRAM cells typically

consist of a selector transistor and a capacitor (1T-1C). Designs

like STAR, RCAT, SaddleFin, and Vertical Channels [15]–[18]

have been developed to improve performance. Researchers of-

ten use transistor and material models with TCAD simulations

to capture physical properties, but TCAD is time-consuming

and direct integration with DRAM simulators is impractical.

To address this, we propose a concise set of parameters and

data structures to represent DRAM cell properties, avoiding

costly TCAD simulations.

Second, accurate modeling is needed to link architectural

activities with DRAM cell geometry and layout. Manufacturers

employ various geometries and connection structures, such as

folded and open BL sensing schemes [19], as technology scales.

To model this, we introduce graph-based data structures for

DRAM cell arrays, where 1T-1C cells and their connections

are represented by nodes, edges, and attributes. Simulating

dynamic activities, such as activation, precharge, and read/write

operations, uses an event-driven method, with cell charging or

discharging modeled as messages passing through the graph’s

nodes and edges.

In summary, DATIS is a highly extensible DRAM simulator

that offers an accurate performance model bridging architecture

design and technology characteristics. It empowers researchers

to explore DRAM’s novel features and undocumented capa-

bilities. Moreover, it provides DRAM manufacturers with the

means to experiment with new processes or architecture co-

design using system-trace-enriched stimuli.

This paper makes the following contributions:

• We present a novel, efficient performance model that de-

scribes key features and behaviors of device and geometry

structures under various manufacturers’ technology nodes

and processes.

• We integrate DATIS with Ramulator, unlocking the ca-

pability of jointly simulating architectural activities and

technology node effects based on the above modeling.

• We demonstrate the feasibility and effectiveness of

DATIS through three representative applications, covering

DRAM’s storage features (leakage and retention time),

Fig. 2. DRAM process and geometry structures.

security (RowHammer), and novel functions (computing-

in-memory).

To the best of our knowledge, no existing DRAM simulator

of this kind has been designed to comprehensively capture

technology features and their joint interactions with architecture

design.

II. BACKGROUND AND MOTIVATION

In this section, we first provide a concise overview of DRAM

architectures and technology advancements. We then review

existing research on DRAM simulators. Finally, we present

three notable cases that highlight the importance of close

architecture and technology co-design.

A. DRAM Architecture and Structures

1) Architecture and Operation Basics: Modern DRAM sys-

tems feature a multi-level hierarchy. At the top level, the

DRAM controller manages multiple channels, each with in-

dependent control signals. Channels consist of multiple ranks,

and each rank contains several DRAM chips, which are divided

into banks housing organized cell arrays. Before reading (RD)

or writing (WR) to a DRAM cell, the corresponding wordline

(WL) must be activated (ACT) to place data on the bitlines

(BL). Precharge (PRE) is the process of preparing the memory

cells for the next activation. Refresh (REF) is periodically

applied on the memory row to counteract capacitor charge

leakage and ensure data integrity over time.

2) Cell Layout.: DRAM cell layout has evolved to improve

density and performance, as shown in Figure 2. Traditional

DRAM uses an 8F 2 folded sensing architecture, where adjacent

bitlines share a sense amplifier (SA) and transistor drain [20].

With technology scaling, the 6F 2 open bitline (BL) sensing

scheme emerged, connecting one SA to two BLs [20], though

shared active regions among nearby cells increase noise [21].

The latest 4F 2 layout vertically aligns transistors and capacitors

at wordline-bitline intersections [22], reducing BL capacitance

and noise by eliminating shared drain nodes. These advance-

ments aim to improve DRAM efficiency and performance.

3) Device Structures.: As technology nodes scale, DRAM

cell structures have evolved, as shown in Figure 3. At the

8F 2 node, the Recessed Channel Gate Transistor (RCAT) [16],

developed from the Step-Gated Asymmetric (STAR) cell [15],

535

Fig. 3. Comparison of DRAM cell structures: (a) RCAT, (b) Saddle Fin, and
(c) Vertical Channel.

improves both static and dynamic performance by introducing

a recessed channel. The 6F 2 node introduced the SaddleFin

[17] structure, combining RCAT’s recessed channel (length

dimension) with FinFET’s fin structure (width dimension),

significantly extending retention time. Currently, the 4F 2 node

is shifting to Vertical Gate [22] cells, offering enhanced drive

capabilities over earlier designs.

B. DRAM Simulators

Over the past decade, several DRAM simulators have been

developed to evaluate main memory performance. USIMM [13]

provides a basic DRAM simulation module, workloads, and

metrics for scheduling algorithm development. DRAMSim2

[12] adds cycle-accurate simulation with a Verilog timing

model, improving memory scheduling realism. DRAMSim3

[23] builds on this by addressing 3D packaging. Ramulator

[11] emphasizes user-friendliness, supporting a wide range of

standards with scalability and portability, making it a popular

open-source simulator. However, as technology nodes shrink,

device-level performance variations have become more signif-

icant, a factor not fully addressed by existing simulators. This

gap limits optimization of current DRAM architectures and

development of new storage systems.

C. DTCO Cases in DRAMs

The overall performance of DRAM, including factors like

throughput and power efficiency, is often influenced by the

combined effects of architectural activities and technology

process. This often necessitates a co-optimization approach

encompassing both architectural design and technology con-

siderations.

1) Memory-related performance optimization: DRAM faces

data corruption risks due to capacitor charge leakage, requiring

periodic refresh commands. Previous research [8] shows that

refreshing can reduce throughput by nearly 50% and account

for over 40% of total power consumption at the 64 Gb

density node. One example of DTCO with leakage is process-

aware refreshing algorithm design to optimize memory access

throughput and power consumption. Mutlu et al. [8] leverage

retention time variations among DRAM cells, achieving sig-

nificant power savings and throughput improvements with a

new refresh strategy. As DRAM capacity and density increase,

Fig. 4. Device Leakage Model.

leakage challenges worsen, impacting reliability, operating fre-

quency, and device design and so on.

2) RowHammer and security: RowHammer is a circuit-level

interference where repeated access to memory rows within

a single refresh cycle induces charge disturbances in adja-

cent cells, leading to bit-flip errors. Addressing RowHammer

requires close DTCO collaboration, as it is tied to process

technology, device structures, and circuit layouts. For instance,

in the 6F 2 geometry, two adjacent cells on the same bitline

share an active region, as shown in Figure 2(b). A single

sense amplifier (S/A) connects to two bitlines (BLs), and this

shared configuration causes unpredictable charge fluctuations

when neighboring rows are accessed, complicating bit-flip

predictions.

3) Computing-in-memory: Computing-in-memory (CIM)

has gained attention as a solution to memory-wall challenges,

utilizing DRAM’s analog properties for logic operations within

main memory. However, this reliance on DRAM’s analog be-

havior requires careful consideration of architectural and tech-

nological factors. Research shows that process variations and

manufacturing imperfections can significantly impact charge

levels and cell voltage. Performing CIM operations on partially

charged cells during a refresh cycle can lead to unpredictable

behavior or calculation failures. Therefore, close co-design of

architecture and technology is essential to support advance-

ments in CIM.

With these DTCO scenarios as motivation, we introduce

our integrated simulation tool for architecture and technology

validation and verification.

III. MODELING METHOD

In this section, we present our approach to constructing sim-

ulation models that bridge architectural activities with process

and technology factors.

A. Device-level Analog Behavior

DRAM capacitors inherently experience charge loss over

time, with static leakage emerging as a critical concern in

536

various DTCO scenarios, especially when analog characteris-

tics, as discussed in Section II-C, become a factor. In such

situations, the information stored in DRAM cells transcends the

binary realm of 0s and 1s, instead existing as decimal values

between 0 and 1. DRAM researchers often retrieve device

performance parameters through complex TCAD simulations or

semiconductor parameter analysis. However, direct integration

of these methods into DRAM simulators is impractical due

to unacceptable simulation time or the necessity of real chip

testing [24].

To facilitate efficient simulation of static device models, we

propose a set of streamlined abstractions designed to capture

the analog attributes of DRAM cells. We denote the voltage

across the capacitor as VSN , which is determined by the amount

of charge currently retained in the capacitor Q(t) and its

capacitance C0. The VSN decreases as the charge leaks out,

a process governed by the leakage current Ileakage. Hence, this

charge Q(t) is calculated by subtracting the charge leaked

over time from the initial charge Q0. The leaked charge is

obtained by integrating the leakage current Ileakage over time

t,as illustrated in Figure 4(b). Many previous researches have

revealed that the relationship between Ileakage and retention

time t is very complex and usually related to vendor pro-

cesses. For example, in a recent study [25], these mechanisms

have been classified according to their origins: 1) Generation-

Recombination (G-R) leakage arises from carriers generation

within the depletion region; 2) drift–diffusion (D–D) leakage

results from carriers movement in the non-depletion region;

and 3) tunneling-induced leakage occurs as carriers traverse

the dielectric layer.

In the proposed DATIS simulator, we provide an API for

researchers to fill in their own formula of Ileakage, and we will

do the integral calculation automatically.

To simplify and abstract the complex relationship between

leakage current Ileakage and retention time t in simulations,

we provide a general representation, as shown in Equation

(1). In this representation, Ileakage consists of the sum of four

components: IGIDL, IGIJL, IDD, and IGATE LEAKAGE. Each of

these factors represents different leakage mechanisms: IGIDL

(Gate-Induced Drain Leakage), IGIJL (Gate-Induced Junction

Leakage), IDD (Drift-Diffusion Leakage), and IGATE LEAKAGE

(Gate Leakage). Users can customize the formulas for these

four parameters respectively. For instance, some previous work

[26], [27] proposed much more simplified representations, e.g.

inversely proportional to the retention time t, as shown in

Equation (2). While some other work [25] presents a more

complicated formulation, as is defined in equation (1) and

Figure 4(c). These different representations of Ileakage can all be

represented and simulated in DATIS, which are customizable

by user APIs.

Ileakage = IGIDL + IGIJL + IDD + IGATE LEAKAGE (1)

Ileakage =
α

t
(2)

Moreover, process variations typically influence parameters

such as C0, Ea, and α, among others. Previous research reveals

that these variations usually follow Gaussian distributions [28].

To assist users in simulating process variations, we support

APIs that allow users to add customized process-dependent

distributions to these parameters.

B. Geometry-level Interaction Model

There are mainly two types of interactions among DRAM

cells, (1) charge sharing among capacitors and (2) crosstalks

during circuit activities.

Charge sharing occurs when cells are activated for oper-

ations such as ”row copy,” where data is transferred between

DRAM rows, or during the ”read” operation, where data is

moved to the row buffer. In CIM, logic operations are per-

formed by activating multiple rows simultaneously, distributing

charges among cells. Our simulation model is based on the

capacitance equation Q = C×U , where charge sharing causes

the charge to distribute evenly, resulting in all capacitors sharing

the same voltage, as shown in Figure 5.

Fig. 5. Charge sharing models.

Inter-cell crosstalk shows complex leakage patterns influ-

enced by activation modes, voltage distributions, and geo-

metric structures, as illustrated in Figure 6. Architecturally,

it is classified into single-sided and double-sided crosstalk.

Geometrically, adjacent cells may share a common or distinct

source node. At the device level, leakage behavior varies based

on whether the cell stores a 1 or 0. Additionally, temperature

and supply voltage also affect inter-cell crosstalk.

To model crosstalk between adjacent cells, we propose a

graph-based intermediate representation (GIR), composed of

nodes and edges, G = {N, E}, where each node (n ⊂ N)

represents a DRAM cell and each edge (e ⊂ E) represents

connections between neighboring cells, indicating potential

crosstalk.

With the GIR abstraction, users can define DRAM processes

in DATIS by specifying cell characteristics and interactions.

For instance, Michael et al. [19] use a transmission line model

to calculate wordline and bitline crosstalks, while Andrew

et al. [29] propose an equation linking RowHammer leakage

with crosstalk noise and temperature. Users can apply these

functions to the GIR with appropriate parameters to model these

effects. DATIS simulates cell array activities in three steps per

clock cycle: (1) apply DRAM command traces on wordlines

(e.g., ACT, READ), (2) scan the GIR to accumulate crosstalks

around each cell, and (3) update cell statuses.

C. Aging model

Aging of the DRAM peripheral circuits poses an inevitable

reliability threat to DRAM operations, such as the variable

delays. These delays can lead to deviations in the timing

issues, ultimately resulting in errors during DRAM read and

537

Fig. 6. Different crosstalk patterns.g p

Fig. 7. Graph IR to model interaction crosstalks.

Fig. 8. Hierarchical Structure of DATIS.

write operations. To account for aging, the digital circuits

are functionally modelled with its timing delay as aging-

aware parameters. The analog circuits, such as the sensitive

amplifier are modelled with its matching and noise. The aging

of these circuits can be obtained through the circuit simulation

[30]. Encompassing all these information into DATIS, we can

accurately model and address the impact of aging on DRAM

performance.

IV. IMPLEMENTATION DETAILS

DATIS is built upon Ramulator [31], a popular open-source

simulator that supports various DRAM standards, includ-

ing DDRx, LPDDR5, GDDR6, and HBM2&3 etc. Likewise,

DATIS follows a hierarchical structure mirroring the organi-

zation of DRAM, as is shown in Figure 8. User-configurable

parameters are transmitted to their respective levels while the

rank and bank layers construct the virtual structure of DRAM

based on these parameters.

The subarray layer encompasses crucial command process-

ing functions responsible for handling memory traces. These

functions encompass prevalent DRAM commands, including

PRE, ACT, RD, WR, REFA, REFB, and REFPR (targeted row

refreshing). Notably, within the subarray layer, three models

outlined in Section III are integrated: 1) cell-abstract, which

records various static properties of array cells, including node

voltage, static leakage, capacitors etc.; 2) geometry-abstract,

representing interaction functions between individual cells and

neighboring cells through equivalence; and 3) periphery, inte-

grating non-ideal circuit-level models such as aging and noise.

V. CASE STUDY

In this section, we demonstrate the practicality and effective-

ness of the DATIS with three DTCO cases mentioned in the

previous Section II-C.

A. Experimental Setup

Due to the confidentiality of DRAM device parameters, we

encounter challenges in accessing device parameters used in

previous papers or provided by manufacturers for our simula-

tions. In this section, we utilize data from TCAD simulations,

and we compare our simulation results with the phenomena

reported in previous research papers. We conduct experiments

using sub-20 nm node-sized Buried-Channel-Array-Transistor

(BCAT) devices for the DRAM array transistors. The transfer

characteristics (Id-Vg) of these transistors were calibrated using

testing data from real sub-20 nm process DRAM chips. The ge-

ometry is structured with a 6F2 layout, and the cell capacitance

is set to 10 fF.

B. Static leakage and retention time

The static leakage model is complex due to the presence

of multiple mechanisms. We adopt the three leakage current

mechanisms and formulas mentioned in Figure 4. The crucial

parameters required for these formulas were obtained through

TCAD simulations and experimental data, consistent with [25].

We can draw two observations from Figure 9. First,at the

cumulative probability distribution (CDF) of 0.5, the retention

times corresponding to temperatures of 325K, 375K, and 425K

are 4 × 105 ms, 8 × 103 ms, and 2 × 102 ms, respectively,

which align with [25]. Second, it demonstrates the correlation

between temperature and retention distribution. As temperature

increases, retention time decreases, aligning with findings from

previous studies [32].

C. RowHammer and DTCO optimizations

To mitigate storage failures caused by RowHammer effects,

numerous studies [1], [10] have explored the relationships

between refreshing intervals and RowHammer errors, and have

proposed new refreshing algorithms [33], [34] to protect vul-

nerable cells. To assess DATIS’s adaptivity to the RowHammer

phenomenon, we conducted simulations of DRAM read and

write operations while varying refresh intervals and monitoring

DRAM security performance.

538

Fig. 9. Cumulative distribution function (CDF)
of retention time under different temperatures.

Fig. 10. Error rate with respect to varied access patterns(a-
c) and processes(d).

Fig. 11. Simulation of two refreshing algo-
rithms for RowHammer.

We conduct simulations with three different patterns: (a)

malicious attacks with single-side hammering, (b) malicious

attacks with double-side hammering, and (c) a random pattern.

As depicted in Figure 10(c), we observed a significant increase

in the proportion of erroneous memory cells as refresh intervals

extended. For the random pattern, a typical refresh interval

of 64ms effectively maintained storage information within a

secure range. However, in the case of extreme malicious attacks

as shown in Figure 10(a)(b), ensuring that the DRAM error rate

remains within an acceptable range necessitates significantly

shorter maximum refresh intervals than 64ms. Notably, our

simulations indicate that the retention time under double-side

hammering is reduced by approximately 83% compared to

single-side hammering, which is consistent with the previ-

ously reported reduction of 77% in another study [35]. This

consistency further validates the reliability of our simulator’s

results depicted in Figure 10(a)(b). Furthermore, we conducted

experiments with refreshing algorithms designed to mitigate

RowHammer issues, showcasing how DATIS can facilitate

DTCO studies. The PARA algorithm suggests refreshing neigh-

boring rows after each row’s activation based on a probability

parameter. In contrast, ProHIT introduces a hot-cold table to

track rows prone to RowHammer failures. As indicated by the

experimental results in Figure 11 , it becomes evident that

ProHIT significantly enhances DRAM security compared to

PARA, particularly when facing severe attacks. This observa-

tion aligns with the findings in the referenced paper [34], which

demonstrated that PRoHIT’s combination of access history and

probabilistic management effectively prevents row hammering

by maintaining victim row voltages above the danger threshold,

whereas PARA occasionally fails to do so.

D. Computing-in-memory

Computing-in-memory (CIM) in DRAM involves the simul-

taneous activation of multiple lines, utilizing capacitor charge

sharing, and employing a sensor to enhance bit operations [4].

However, due to various leakage mechanisms, DRAM cells are

not constantly maintained at full charge until the next refreshing

cycle. Conducting CIM operations on cells that are not fully

charged may lead to unexpected behavior or errors.

Fig. 12. Error rate under different cases.

Building upon the charge-sharing model, DATIS can simu-

late CIM operations and their failure mechanisms. DATIS sup-

ports a suite of CIM instructions, such as the AAP (ACT-ACT-

PRE) and AP instructions. In our experiments, we conducted

seven synthetic test cases involving millions of computational

operations (ranging from 192M to 4992M) on a 128x128

DRAM array, using the same settings as in RowHammer

experiments. These cases included: (1) one convolution, (2) one

convolution and one multiplication, (3) two convolutions, (4)

one convolution and two multiplications, (5) two convolutions

and one multiplication, (6) two convolutions and two multi-

plications, and (7) two convolutions and three multiplications.

Each case included intervals between operations to simulate

storage time.

As shown in Figure 12, error rates rise from 0.15 to 0.46 as

the computational complexity increases from case1 to case7.

We observed that with the increase in computational complex-

ity, both the error rate and the number of DRAM rows used also

increase. This observation is consistent with the findings in a

DDR4 chip [36], which show that the number of segments that

support AND/OR operations significantly increases as BER(Bit

Error Rate) increases, ranging from 0.03 to 0.5. This alignment

underscores the reliability of our simulator, DATIS, in modeling

CIM operations and validates the simulation results presented

in our study.

539

VI. CONCLUSION

In summary, the pivotal role of DRAM in main memory

architecture has inspired a wide range of DTCO investigations.

To provide a user-friendly and systematic validation tool for

these burgeoning DTCO studies in DRAM, we present DATIS,

a DRAM Architecture and Technology Integrated Simulator.

DATIS serves as a bridge between architectural design and

technological characteristics, facilitating research into DRAM’s

innovative features and capabilities. Moreover, it aids man-

ufacturers in the collaborative design of processes and ar-

chitectures. We demonstrate the practicality and efficiency of

DATIS through three key applications, encompassing DRAM’s

storage aspects (leakage and retention time), security consider-

ations (RowHammer), and novel functionalities (computing-in-

memory).

REFERENCES

[1] O. Mutlu, “The rowhammer problem and other issues we may face
as memory becomes denser,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. IEEE, 2017, pp. 1116–1121.

[2] L. Cojocar, J. Kim, M. Patel, L. Tsai, S. Saroiu, A. Wolman, and
O. Mutlu, “Are we susceptible to rowhammer? an end-to-end method-
ology for cloud providers,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 712–728.

[3] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: A
low-overhead, locality-aware processing-in-memory architecture,” ACM
SIGARCH Computer Architecture News, vol. 43, no. 3S, pp. 336–348,
2015.

[4] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-
memory accelerator for bulk bitwise operations using commodity dram
technology,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017, pp. 273–287.

[5] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “Pro-
cessing data where it makes sense: Enabling in-memory computation,”
Microprocessors and Microsystems, vol. 67, pp. 28–41, 2019.

[6] H. Hassan, M. Patel, J. S. Kim, A. G. Yaglikci, N. Vijaykumar, N. M.
Ghiasi, S. Ghose, and O. Mutlu, “Crow: A low-cost substrate for improv-
ing dram performance, energy efficiency, and reliability,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019, pp.
129–142.

[7] K. K.-W. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson,
Y. Kim, and O. Mutlu, “Improving dram performance by parallelizing
refreshes with accesses,” in 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2014, pp.
356–367.

[8] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” ACM SIGARCH Computer Architecture News,
vol. 40, no. 3, pp. 1–12, 2012.

[9] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “Computedram: In-memory
compute using off-the-shelf drams,” in Proceedings of the 52nd annual
IEEE/ACM international symposium on microarchitecture, 2019, pp. 100–
113.

[10] A. Olgun, H. Hassan, A. G. Yağlıkçı, Y. C. Tuğrul, L. Orosa, H. Luo,
M. Patel, O. Ergin, and O. Mutlu, “Dram bender: An extensible and
versatile fpga-based infrastructure to easily test state-of-the-art dram
chips,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2023.

[11] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram
simulator,” IEEE Computer architecture letters, vol. 15, no. 1, pp. 45–49,
2015.

[12] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” IEEE computer architecture letters,
vol. 10, no. 1, pp. 16–19, 2011.

[13] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “Usimm: the utah
simulated memory module,” University of Utah, Tech. Rep, pp. 1–24,
2012.

[14] M. K. Jeong, D. H. Yoon, and M. Erez, “Drsim: A platform for
flexible dram system research,” Accessed in: http://lph. ece. utexas.
edu/public/DrSim, 2012.

[15] M. Jang, M. Seo, Y. Kim, S. Cha, Y. Kim, S. Kim, J. Rhee, J. Cheong,
T. Jung, S. Pyi et al., “Enhancement of data retention time in dram
using step gated asymmetric (star) cell transistors,” in Proceedings of
35th European Solid-State Device Research Conference, 2005. ESSDERC
2005. IEEE, 2005, pp. 189–192.

[16] J.-Y. Kim, C. Lee, S. Kim, I. Chung, Y. Choi, B. Park, J. Lee, D. Kim,
Y. Hwang, D. Hwang et al., “The breakthrough in data retention time of
dram using recess-channel-array transistor (rcat) for 88 nm feature size
and beyond,” in 2003 Symposium on VLSI Technology. Digest of Technical
Papers (IEEE Cat. No. 03CH37407). IEEE, 2003, pp. 11–12.

[17] S.-W. Park, S.-J. Hong, J.-W. Kim, J.-G. Jeong, K.-D. Yoo, S.-C. Moon,
H.-C. Sohn, N.-J. Kwak, Y.-S. Cho, S.-J. Baek et al., “Highly scalable
saddle-fin (s-fin) transistor for sub-50nm dram technology,” in 2006
Symposium on VLSI Technology, 2006. Digest of Technical Papers. IEEE,
2006, pp. 32–33.

[18] S. Gautam, S. Maheshwaram, S. K. Manhas, A. Kumar, S. Sherman,
and S. H. Jo, “Reduction of gidl using dual work-function metal gate in
dram,” in 2016 IEEE 8th International Memory Workshop (IMW). IEEE,
2016, pp. 1–4.

[19] M. Redeker, B. F. Cockburn, and D. G. Elliott, “An investigation into
crosstalk noise in dram structures,” in Proceedings of the 2002 IEEE
International Workshop on Memory Technology, Design and Testing
(MTDT2002). IEEE, 2002, pp. 123–129.

[20] A. Spessot and H. Oh, “1t-1c dynamic random access memory status,
challenges, and prospects,” IEEE Transactions on Electron Devices,
vol. 67, no. 4, pp. 1382–1393, 2020.

[21] T. Schloesser, F. Jakubowski, J. v. Kluge, A. Graham, S. Slesazeck,
M. Popp, P. Baars, K. Muemmler, P. Moll, K. Wilson, A. Buerke,
D. Koehler, J. Radecker, E. Erben, U. Zimmermann, T. Vorrath, B. Fis-
cher, G. Aichmayr, R. Agaiby, W. Pamler, T. Schuster, W. Bergner, and
W. Mueller, “6f2 buried wordline dram cell for 40nm and beyond,” in
2008 IEEE International Electron Devices Meeting, 2008, pp. 1–4.

[22] H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K.-W. Song, J. Kim, Y. C.
Oh, Y. Hwang, H. Hong, G.-Y. Jin, and C. Chung, “Novel 4f2 dram cell
with vertical pillar transistor(vpt),” in 2011 Proceedings of the European
Solid-State Device Research Conference (ESSDERC), 2011, pp. 211–214.

[23] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3: A
cycle-accurate, thermal-capable dram simulator,” IEEE Computer Archi-
tecture Letters, vol. 19, no. 2, pp. 106–109, 2020.

[24] S. Jin, J.-H. Yi, J. H. Choi, D. G. Kang, Y. J. Park, and H. S. Min,
“Prediction of data retention time distribution of dram by physics-based
statistical simulation,” IEEE Transactions on Electron Devices, vol. 52,
no. 11, pp. 2422–2429, 2005.

[25] Y. Liu, D. Wang, P. Ren, J. Li, Z. Qiao, M. Wu, Y. Wen, L. Zhou,
Z. Sun, Z. Wang, Q. Han, B. Wu, K. Cao, R. Wang, Z. Ji, and
R. Huang, “Understanding retention time distribution in buried-channel-
array-transistors (bcat) under sub-20-nm dram node—part i: Defect-based
statistical compact model,” IEEE Transactions on Electron Devices, pp.
1–7, 2024.

[26] D. Ha, C. Cho, D. Shin, G.-H. Koh, T.-Y. Chung, and K. Kim, “Anoma-
lous junction leakage current induced by sti dislocations and its impact on
dynamic random access memory devices,” IEEE Transactions on Electron
Devices, vol. 46, no. 5, pp. 940–946, 1999.

[27] A. Weber, A. Birner, and W. Krautschneider, “Retention tail improvement
for gbit drams through trap passivation confirmed by activation energy
analysis,” in 2006 European Solid-State Device Research Conference.
IEEE, 2006, pp. 250–253.

[28] Y. Li, H. Schneider, F. Schnabel, R. Thewes, and D. Schmitt-Landsiedel,
“Dram yield analysis and optimization by a statistical design approach,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58,
no. 12, pp. 2906–2918, 2011.

[29] A. J. Walker, S. Lee, and D. Beery, “On dram rowhammer and the physics
of insecurity,” IEEE Transactions on Electron Devices, vol. 68, no. 4, pp.
1400–1410, 2021.

[30] K. Kim, I. Chung, D. Sun, S. Rhe, I. Kim, H. Hwang, K. Cho, and G. Jin,
“Study on off-state hot carrier degradation and recovery of nmosfet in
swd circuits of dram,” in 2016 IEEE International Integrated Reliability
Workshop (IIRW), 2016, pp. 91–94.

[31] H. Luo, Y. C. Tuğrul, F. N. Bostancı, A. Olgun, A. G. Yağlıkçı, , and
O. Mutlu, “Ramulator 2.0: A Modern, Modular, and Extensible DRAM
Simulator,” 2023.

[32] K. Y. Kim, K. K. Min, and B.-G. Park, “Trap-induced data-retention-time
degradation of dram and improvement using dual work-function metal
gate,” IEEE Electron Device Letters, vol. 42, no. 1, pp. 38–41, 2020.

[33] M. Son, H. Park, J. Ahn, and S. Yoo, “Making dram stronger against
row hammering,” in 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), 2017, pp. 1–6.

540

[34] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), 2014,
pp. 361–372.

[35] L. Zhou, J. Li, Z. Qiao, P. Ren, Z. Sun, J. Wang, B. Wu, Z. Ji, R. Wang,
K. Cao, and R. Huang, “Double-sided row hammer effect in sub-20 nm
dram: Physical mechanism, key features and mitigation,” in 2023 IEEE
International Reliability Physics Symposium (IRPS), 2023, pp. 1–10.

[36] A. Olgun, H. Hassan, A. G. Yağlıkçı, Y. C. Tuğrul, L. Orosa, H. Luo,
M. Patel, O. Ergin, and O. Mutlu, “Dram bender: An extensible and
versatile fpga-based infrastructure to easily test state-of-the-art dram
chips,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 42, no. 12, pp. 5098–5112, 2023.

541

