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Abstract—Tensor parallelism (TP) in large-scale LLM in-
ference and training introduces frequent collective operations
that dominate inter-GPU communication. While in-switch com-
puting, exemplified by NVLink SHARP (NVLS), accelerates
collective operations by reducing redundant data transfer, its
communication-centric design philosophy introduces the mis-
match between its communication mode and the memory seman-
tic requirement of LLM’s computation kernel. Such a mismatch
isolates the compute and communication phases, resulting in un-
derutilized resources and limited overlap in multi-GPU systems.

To address the limitation, we propose CAIS, the first Compute-
Aware In-Switch computing framework that aligns communica-
tion modes with computation’s memory semantics requirement.
CAIS consists of three integral techniques: (1) compute-aware
ISA and microarchitecture extension to enable compute-aware
in-switch computing. (2) merging-aware TB (Thread Block)
coordination to improve the temporal alignment for efficient
request merging. (3) graph-level dataflow optimizer to achieve a
tight cross-kernel overlap. Evaluations on LLM workloads show
that CAIS achieves 1.38× average end-to-end training speedup
over the SOTA NVLS-enabled solution, and 1.61× over T3,
the SOTA compute-communicate overlap solutions but do not
leverage NVLS, demonstrating its effectiveness in accelerating
TP on multi-GPU systems.

I. INTRODUCTION

The rapid scaling of large language models (LLMs) has
pushed distributed training and inference systems to unprece-
dented scales, where clusters composed of hundreds or even
thousands of GPUs must work together seamlessly [6], [7],
[33], [50]. To fully utilize such large-scale GPU clusters,
hybrid parallelism, combining data parallelism (DP), pipeline
parallelism (PP), and tensor parallelism (TP), has become
the de facto strategy for scaling. Among them, DP and PP
mainly serve to scale out across nodes by distributing data
batches and network layers, whereas TP is designed to scale
up by partitioning large matrix operations across multiple
GPUs [25], [30], [35], [49]. This tensor-level partitioning
enables fine-grained parallel execution but also makes TP
the most communication-intensive and structurally complex
scheme. A recent study [30] reveals that TP contributes to over
99% of total data traffic, while data and pipeline parallelism
together account for less than 1%. Furthermore, TP exhibits
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structurally complex dependencies, as its communication lies
on the critical path where computation cannot directly overlap,
making optimization inherently difficult [43]. Therefore, as
models grow to trillion-parameter scale, TP’s communication
overhead becomes a first-order bottleneck that fundamentally
limits cluster scalability and system efficiency [19], [43].

To overcome this limitation, recent GPU architectures
have evolved toward tighter interconnect integration. High-
bandwidth NVLink and NVSwitch [41], [42] have become
essential enablers for scaling up LLM systems through tensor
parallelism, providing terabyte-per-second inter-GPU connec-
tivity. However, as LLMs continue to grow, even these high-
speed links face severe pressure from redundant data transfers
among GPUs. To further relieve this bottleneck, NVIDIA
introduced NVLink SHARP (NVLS) [24], [37], an in-switch
computing architecture that performs collective reductions
directly within the NVSwitch fabric. By performing reductions
in-flight, NVLS reduces redundant GPU-to-GPU transfers and
achieves 2–8× speedups for collective primitives compared
to GPU-driven implementations [24]. However, NVLS re-
mains fundamentally communication-centric, focusing solely
on accelerating collective operations without considering their
interplay with computation kernels such as GEMM. This isola-
tion prevents smooth and tight overlap of communication and
computation, often leaving GPUs idle during communication
phases. This problem is further amplified in large-scale LLM
inference and training workloads, where tensor parallelism
introduces frequent collective operations that account for up
to 40–60% of total latency [19], [43], [52]. While recent
work has explored compute-communication overlap through
software scheduling [4], [19], [52] and hardware-assisted
overlapping [43], none leverage in-switch computing, missing
the opportunity to fully exploit NVLS’s architectural potential.

The key obstacle lies in the mismatches between the existing
NVLS communication primitives and the requirements of TP
compute kernels: the communication mode (i.e., push/pull
modes) of NVLS primitives fail to align with the required mem-
ory semantics (i.e., read/write) of TP kernels such as GEMM.
For example, an AllGather operation followed by a GEMM
often requires on-demand remote reads, but NVLS implements
AllGather as push-based stores with the multimem.st in-
struction, transmitting data eagerly regardless of when the con-
sumer computation is ready. Likewise, a GEMM followed by



Reduce-Scatter requires distributed writes, but NVLS imple-
ments it with a pull-based multimem.ld_reduce instruc-
tion, which forces consumers to fetch data instead of receiving
it inline. This misalignment introduces strict global barriers
that prevent fine-grained compute-communication overlap.

This limitation motivates a shift toward compute-aware
in-switch computing that aligns communication modes with
computation’s memory semantics requirement. Therefore, we
propose CAIS, the first Compute-Aware In-Switch computing
framework that aligns the two sides. With CAIS, the computa-
tion kernel should directly issue load/reduction instructions for
communication following its memory semantic requirement,
while the switch automatically performs request merging for
these remote accesses.

However, designing such a compute-aware in-switch com-
puting has three challenges: 1 Current GPU and NVLS
lack necessary ISA and architecture support to express and
process compute-aware in-switch computing. 2 Even with
instruction and architecture supports, independently scheduled
TBs across GPUs result in staggered requests, reducing merge
efficiency and causing switch buffer contention. 3 Isolated
operators make it difficult to exploit the producer-consumer
relationships in LLM dataflow graph (DFG), limiting resource
utilization. To address these challenges, CAIS co-designs
GPU ISA, switch microarchitecture, and graph-level dataflow
with three techniques: 1 CAIS provides compute-aware
ISA and microarchitecture extension that enables compute-
aware in-switch computing. 2 CAIS introduces a lightweight
compiler-architecture co-design to coordinate TB execution
across GPUs, maximizing merge success rate without incur-
ring high synchronization costs. 3 CAIS integrates a graph-
level dataflow optimizer, exploiting fine-grained TB-level over-
lapped execution to maximize computation and communica-
tion resource utilization. To the best of our knowledge, this is
the first work to realize fine-grained compute-communication
overlap within an in-switch computing paradigm.

We summarize the key contributions as follows:
• We uncover a critical misalignment between the commu-

nication semantics of current in-switch primitives and the
memory access requirements of LLM compute kernels,
resulting in underutilized resources and limited overlap.

• We propose CAIS, the first compute-aware in-switch
computing framework that co-designs GPU ISA, switch
microarchitecture, and operator dataflows to enable fine-
grained, kernel-integrated compute-communicate overlap.

• We implement CAIS in a cycle-accurate simulator and
evaluate it on three LLM inference and training work-
loads, achieving on average 1.38× end-to-end training
speedup over NVLS-augmented baselines, and 1.61×
over T3 [43], the SOTA compute-communicate overlap
solutions but do not leverage NVLS.

The rest of this paper is organized as follows. Section II
reviews background and motivates compute-aware in-switch
computing. Section III presents the CAIS design, including
ISA extensions, micro-architecture design, and the supporting
compiler and runtime mechanisms. Section IV describes our

experimental methodology. Section V evaluates CAIS on rep-
resentative LLM training and inference workloads. Section VI
discusses related work and Section VII concludes.

II. BACKGROUND AND MOTIVATION

A. LLM and Tensor Parallelism

Large language models (LLMs) such as GPT-4 [2] and
LLaMA-3 [12] have surpassed the trillion-parameter scale,
driving unprecedented demands for compute and memory
bandwidth. These models are dominated by dense linear
algebra kernels, particularly general matrix multiplications
(GEMMs) and matrix-vector multiplications (GEMVs), which
exhibit quadratic or cubic growth in compute and memory
complexity as hidden dimensions or attention heads increase.
To scale these workloads across multiple GPUs, modern
deployments employ hybrid parallelism strategies combining
data parallelism (DP) [45], [47], pipeline parallelism (PP) [16],
[28], and tensor parallelism (TP) [25], [35], [49].

Among these strategies, TP introduces the heaviest com-
munication overhead, because each FFN or attention layer
is split across GPUs and requires frequent inter-GPU collec-
tive operations, e.g., AllReduce and AllGather, to aggregate
partial results. Unlike DP, which incurs communication only
during gradient synchronization, or PP, where communication
is confined to activation exchanges between stages, TP creates
per-layer synchronization points that scale with model depth
and width. Recent studies show that for multi-GPU training
with TP, 40–60% of end-to-end latency arises from inter-GPU
data transfers [19], [43], [52]. As LLMs scale, communication
costs are expected to dominate overall runtime unless new
architectural solutions emerge.

Fig. 1(a)(b) illustrates two commonly-used TP strategies.
(1) Basic TP partitions the key computational modules of
a Transformer, such as the Q, K, and V in Attention, as
well as the FFN, across multiple GPUs along the hidden
dimension or the head dimension. In Fig. 1(a), f is AllReduce
(AR) in the forward pass and no operation in the backward
pass. f is no operation in the forward pass and AllReduce
in the backward pass. (2) TP with Sequence Parallelism
(SP), a more recent variant, partitions operations along the
sequence length and employs a combination of AllGather (AG)
and Reduce-Scatter (RS) operations to eliminate redundant
activations. In Fig. 1(b), g is Reduce-Scatter in the forward
pass and AllGather in the backward pass. g is AllGather in
the forward pass and Reduce-Scatter in the backward pass.
Although AllReduce in Basic TP is mathematically equivalent
to Reduce-Scatter plus AllGather, TP with SP can partition
more operations (e.g., LayerNorm) and hence reduces memory
consumption for activations across GPUs.

B. NVLink/NVSwitch-based Multi-GPU Systems

Modern AI systems attempt to address communication
bottlenecks by coupling dozens or hundreds of GPUs via
high-radix NVLink/NVSwitch networks [41], [42]. NVLink
has evolved from its first generation [9], delivering 160 GB/s
GPU-to-GPU bandwidth on Pascal, to the fifth generation [41]



Fig. 1: Motivation for Compute-Aware In-Switch Computing in Tensor Parallelism. (a–b) Tensor Parallelism (TP) in LLM. (c–f)
Collective Communication and Computation Kernel Relationship. (g–i) Comparison of Existing NVLS Primitives, Compute-
aware TP Requirements and Our Proposal. (j-k) Comparison of Computation Details between Existing NVLS and Our Proposal.

in Blackwell, which provides 1.8 TB/s GPU-to-GPU band-
width and powers large-scale systems such as NVL72 (72
GPUs) [41], [42]. While these fabrics offer scalable collec-
tive operations, their performance remains bounded by link
bandwidth. To quantify this limitation, we execute LLaMA-
7B on our simulated NVIDIA H100 SuperPOD interconnected
via a 900 GB/s NVLink/NVSwitch fabric, varying the number
of participating GPUs (see Section IV). As shown in Fig. 2,
communication time quickly overtakes computation time once
the system scales beyond 4–8 GPUs; In particular, under
an 8-GPU configuration, the average communication time is
about 1.6× longer than computation across the model. This
problem will worsen with future 1T+ parameter models, whose
communication volume grows super-linearly due to deeper
layers and larger token batches. These observations underscore
the urgent need for architectural approaches that reduce or hide
communication, rather than merely speeding up links.

In-switch computing has attracted much attention in the
computer network community. Many works [5], [8], [10],
[11], [13]–[15], [21], [26], [29], [31], [32], [48], [51], [53],

[54] have been proposed to accelerate the AllReduce in
the distributed system. In recent years, NVIDIA’s NVLink
SHARP [24], [37] (NVLS) brought in-switch computing into
inter-chip network to address these efficiency and scalability
bottlenecks of multi-GPU systems. NVLS offloads collective
operations (e.g., AllReduce and Reduce-Scatter) to NVSwitch,
performing reductions “in-flight” and reducing data move-
ment [24], [37]. NVLS has been supported in modern GPU
architecture. With NVIDIA’s Hopper GPUs, in-switch opera-
tions such as multicast and reduction can be issued via PTX-
level multimem instructions, including multimem.st,
multimem.ld_reduce, and multimem.red, enabling
collective operations to be performed inside NVSwitch fabrics.
These instructions can, in principle, be embedded in computa-
tion kernels such as GEMM to trigger multi-GPU collectives
directly, and have become a cornerstone capability in modern
systems. The study [24] on NVLS has demonstrated 2×–8×
speedups for collective operations compared to GPU-driven
communication, thanks to its hardware-accelerated multicast
and reduction integrated with NVSwitch.



Fig. 2: Computation-Communication Time When Scaling Up.

C. Limits of Current In-Switch Computing

Despite these advances, current in-switch computing re-
mains fundamentally communication-centric: it is solely de-
signed to accelerate collective operations but remains agnostic
to the computation kernels such as GEMM that produce or
consume these data streams. For example, AllGather operator
collects data chunks from all participating GPUs and redis-
tributes the complete concatenated result back to every GPU.
NVLS currently implements this via the multimem.st in-
struction, where each GPU proactively “pushes” its data to all
other GPUs as soon as it becomes available. In the context of
pure collective communication acceleration for the AllGather
operator, push mode provides clear advantages over pull mode.
By allowing each GPU to proactively transmit its data to peers
as soon as it is ready, push mode forms a continuous, one-way
data stream that avoids the roundtrip latency to remote mem-
ory inherent in pull-based communication. This also ensures
higher bandwidth utilization, as the data pipeline remains fully
saturated without idle periods caused by prolonged traffics.
Other collective operations follow a similar design paradigm.
Fig. 1(g)’s table lists all the NVLS PTX primitives and their
corresponding communication modes.

However, this communication-centric design limits the op-
portunities for overlapping computation and communica-
tion. For instance, during the forward pass of LLMs, All-
Gather operation is often immediately followed by a GEMM
operator, such as in attention and FFN. As illustrated in
Fig. 1(e), the GEMM’s computation requires memory reads
from both local and remote devices. Yet, multimem.st, the
in-switch computing instruction used for AllGather, operates
in push-mode. This mismatch between architectural support
and workload requirements forces computation and its as-
sociated communication to be executed on different GPUs.
It introduces global barriers to preserve producer-consumer
dependencies. As a result, computation and communication are
isolated into separate phases, leaving SMs idle while waiting
for synchronization. Fig. 1(j) visualizes this process in detail.
Profiling on LLaMA-7B with TP shows that GPU utilization
can drop below 60%, even when NVLS is enabled.

To summarize the scope of this mismatch, Fig. 1(c)–(f)
illustrate the memory access patterns of the four computation-
communication combinations in TP across multiple GPUs,
while Fig. 1(g)–(h) summarize the mismatches between

Fig. 3: The System Architecture of CAIS.

the current NVLS design and the requirements of com-
putation kernels. Specifically, AllGather + GEMM (AG-
GEMM) requires memory reads, but NVLS only provides
multimem.st in push mode. GEMM + Reduce-Scatter
(GEMM-RS) requires memory writes, but NVLS provides
only multimem.ld_reduce in pull mode. Similarly, Basic
TP with AllReduce + GEMM (AR-GEMM) and GEMM +
AllReduce (GEMM-AR) requires both memory reads and
writes, while NVLS currently offers only multimem.red
in push mode.

D. Design Philosophy and Challenges

As previously analyzed, a fundamental mismatch exists
between the communication modes supported by current in-
switch computing systems and the memory access semantics
required by LLM computational kernels, resulting in isolated
computation and communication. This limitation motivates a
shift toward compute-aware in-switch computing. Our philoso-
phy is: computation kernel should directly issue load/reduction
instructions for communication following its memory semantic
requirement, while the switch automatically performs request
merging for these remote accesses.

This approach enables semantic alignment between com-
munication mode and computational intent, unlocking more
native and tighter communication-computation overlap. As
illustrated in Fig. 1(k), taking AG-GEMM as an example, fol-
lowing its memory semantic requirement, computation kernel
directly reads remote data via load operations in pull mode.
Because both the computation and its remote data access are
performed by the same TB, only TB-level local barriers are
needed to enforce dependencies between communication and



computation, allowing computation and communication across
different SMs to overlap naturally.

The system architecture of CAIS is illustrated in Fig. 3.
When a GEMM kernel issues reduction or load instructions
(for GEMM-RS and AG-GEMM operations, respectively) to
access remote data, the switch dynamically merges these
requests to reduce communication overhead: (1) Reduction
requests: When multiple reduction requests target the same
data, the switch aggregates them by computing the sum and
transmitting only the final result to the destination GPU, thus
reducing the downstream traffic from switch to GPU. (2) Load
requests: When multiple load requests reference the same data,
the switch fetches the data only once from the target GPU and
replicates it to the requesting GPUs, reducing the upstream
traffic from GPU to switch.

However, designing such a compute-aware in-switch com-
puting has three architectural challenges:

(1) Lack of ISA and Microarchitecture Support. Without
GPU ISA and switch microarchitecture support, commercial
GPU cannot perform compute-aware in-switch computing. To
address this limitation, we propose PTX-level instruction ex-
tensions for compute-aware in-switch computing and provide
microarchitectural support for request merging by integrating
a hardware merge unit into the data path at the switch port.
These two supports enable the functionality of the compute-
aware in-switch computing.

(2) Lack of Temporal Coordination. Even with semantic
alignment, temporal misalignment across GPUs [18] remains
a critical bottleneck. Thread blocks (TBs) on different GPUs
are scheduled independently, resulting in staggered memory
requests to the same remote addresses. This misalignment
prevents the switch from merging requests effectively, as
early-arriving requests must wait for delayed ones, leading
to buffer contention and eviction. Our simulation shows that
the delay between the earliest and latest requests to the same
address averages 35 µs. We address this by introducing a
compiler-hardware co-design strategy. The compiler statically
groups TBs with shared data dependencies, while the GPU
runtime enforces lightweight TB-group synchronization, align-
ing access timing and improving merge success rates. Our
experiments demonstrate that these optimizations reduce the
delay to 3 µs, achieving about 10× improvement.

(3) Limited Cross-Kernel Fusion. Prior in-switch comput-
ing approaches have struggled to achieve deep cross-kernel
fusion due to the aforementioned misalignment, which forces
collective kernels operate as isolated phases, making it dif-
ficult to exploit the producer-consumer relationships in the
LLM dataflow graph (DFG). By resolving it, CAIS enables
deeper DFG-level optimizations, allowing TB-level producer-
consumer relationships to be established. As soon as one TB of
an operator completes, dependent TBs of subsequent (and even
further downstream) operators can launch immediately, which
greatly improve the computation-communication efficiency.
Moreover, we find that this approach also allows CAIS to
fuse operators with complementary communication patterns,
maximizing overall bandwidth utilization.

Fig. 4: Extension of the PTX Instructions.

III. CAIS DESIGN

Following the above design philosophy, we introduce CAIS,
a compute-aware in-switch computing framework to over-
come the limitation of existing communication-centric in-
switch computing. The framework consists of three primary
components: 1) Compute-Aware ISA and Microarchitecture
Extensions. This is the core design of CAIS, which funda-
mentally eliminates the global computation–communication
barrier by aligning communication modes with the semantic
requirements of computation.

Building upon the architectural foundation that removes
the global barrier, CAIS further integrates two optimizations:
2) Multi-GPU TB Coordination that aligns cross-GPU TB
execution using compiler-guided grouping and lightweight
in-switch synchronization to maximize temporal locality for
request merging. 3) Graph-Level Dataflow Optimizer that ex-
ploits fine-grained dependency to fuse communication-heavy
operator sequences, e.g., GEMM-RS + LN + AG-GEMM, into
a single execution pipeline, improving bandwidth utilization
and end-to-end performance.

A. Compute-Aware ISA and Microarchitecture Extensions

To support compute-aware in-switch computing, CAIS in-
troduces a co-designed ISA extension and switch microarchi-
tecture that enable dynamic request merging for both load
and reduction operations across GPUs. This design transforms
the switch from a passive relay into an active compute-
aware merging agent, significantly reducing redundant inter-
chip traffic and improving execution efficiency for tensor-
parallel (TP) workloads.

1) ISA Extention for Mergeable Memory Access: We extend
NVIDIA’s PTX instruction set with two new instructions:
ld.cais and red.cais, as shown in Fig. 4. These instruc-
tions encode a 1-bit CAIS flag in memory access requests,
signaling the switch that the request is eligible for in-switch
merging. This lightweight annotation allows the system to se-
lectively apply merging to communication-intensive operations
such as AllGather loads or ReduceScatter reductions, without
modifying existing computation semantics.

2) Switch Micro-architecture for Request Merging: To sup-
port CAIS instructions, we enhance NVSwitch datapath with a
dedicated merge unit (Fig. 5), mainly consisting of two tables:
1) CAM Lookup Table matches incoming requests based on
memory address and type (load or reduction). On a match, re-
quest is merged into an existing session; otherwise, a new entry
is created. 2) Merging Table maintains partial results for each
session, including cached data for loads or accumulated sums



Fig. 5: Switch Micro-architecture for CAIS.

for reductions. Each entry tracks session state (Load-Wait,
Load-Ready, or Reduction) and a counter of merged requests.

These tables operate in tandem to perform on-the-fly aggre-
gation of identical accesses across GPUs. When the last con-
tributing request arrives, the merged data is either forwarded
to requesters (loads) or written to memory (reductions).

3) In-Switch Micro-Functions for Load and Reduction:
With the ISA and switch microarchitecture extensions, CAIS
perform request merging with two micro-functions that handle
load and reduction requests inside the NVSwitch. These
micro-functions extend the existing NVLS pipeline by per-
forming dynamic request detection, caching, and response
generation in-flight, thereby reducing redundant traffic and
avoiding unnecessary synchronization. Fig. 6 illustrates the
flow of the two micro-functions.

Micro-Function 1: Load Request Merging. Load re-
quest merging eliminates redundant load responses. When
a ld.cais request arrives at the switch, the merge unit
first performs an associative search within the CAM Lookup
Table to 1 check for an existing merge entry targeting the
same memory address and request type. 2 If no match is
found, a new entry is allocated in both the CAM Lookup
Table and the Merging Table. The request is forwarded to the
destination GPU through the standard routing path, while the
new entry in the Merging Table is initialized with “Status
= Load-Wait, Count = 1”, and the associated request
metadata is stored in the Content Array. 3 When the
response data from the target GPU returns, the status is

Fig. 6: In-switch Micro-Functions Workflow.

updated to Load-Ready, and the data is cached in the
Content Array. The switch also generates responses for
requests stored in Content Array before caching the arriv-
ing data. After that, the switch can serve subsequent requests
to the same address directly from this cached data without
reissuing memory transactions to the target GPU. 4 If a
later request arrives and hits an active session, the merge unit
either appends the request metadata in Content Array for
deferred response, if the data is still pending, or otherwise
immediately generates a response with the cached data in
Content Array. 5 The completes and its table entries are
released once the Count equals the number of participating
GPUs minus one, excluding the GPU that holds the local copy.

Micro-Function 2: Reduction Request Merging. Reduc-
tion request merging eliminates redundant reduction requests.
Similar to load request merging, for red.cais, multiple
contributions to the same address are accumulated directly
within the switch. Once all expected requests are received, the
sum is written to the destination memory, avoiding duplicate
transmissions. The white blocks in Figure 6 indicate datapaths
reused from NVLS.

Through this combination of load and reduction micro-
functions, the switch can dynamically merge multiple remote
accesses, turning multiple data transmissions into a single
consolidated operation.

4) Eviction Mechanism: If a new entry must be allocated
but the tables are full, an LRU-based eviction policy is
triggered. 1) If the selected entry is for reduction merging,
it is directly evicted, and the partial result is sent to the home
GPU of its address. 2) If the selected entry is for load merging,
entries in the Load-Ready state can be safely evicted,
whereas those in the Load-Wait state are deferred until the
response data arrives. In this case, the arriving pending request
bypasses the merge unit without triggering further eviction,
avoiding thrashing or deadlock.

To handle the remaining requests for the evicted entry,
a timeout-based forward-progress mechanism is employed,
similar to that in existing NVLS [24]. Each merge entry is
equipped with a timer to track the elapsed time since its last
access. If this timer exceeds a predefined threshold, the entry is



Fig. 7: Merging-aware TB-Group Coordination.

automatically evicted, ensuring that no request remains stalled.

5) Deterministic Routing for Merging Convergence: To
ensure all mergeable requests targeting the same address
converge at the same switch, CAIS adopts a deterministic
routing algorithm similar to that used in existing NVSwitch
systems [24]. A lightweight hash function on the request
address (or a subset of its bits) maps each request to a fixed
path, guaranteeing that matching requests are processed by
the same merge unit. Since LLM workloads exhibit regular
and predictable access patterns, a simple deterministic routing
scheme is sufficient to prevent deadlocks and ensure high link
utilization without complex path selection.

B. Cross-GPU TB Coordination

While compute-aware ISA and switch microarchitecture
provide the foundation for in-switch request merging, their
effectiveness critically depends on the temporal alignment of
memory requests across GPUs. In the absence of coordination,
mergeable load or reduction requests from different GPUs
may arrive at the switch at different times, resulting in missed
merging opportunities or buffer pressure due to delayed aggre-
gation. This temporal misalignment is rooted in the fact that
TBs are independently scheduled by the GPU runtime, leading
to execution drift across devices. Even for the same operator,
TBs on different GPUs may issue their memory requests at
slightly different times. For in-switch merging to be effective,
however, these requests must arrive closely in time, within the
lifetime of the Merge Table entry. Otherwise, early-arriving
requests may be evicted or bypassed before others arrive,
negating the benefits of merging. To address this, CAIS intro-
duces a lightweight coordination mechanism at the granularity
of thread blocks, the fundamental parallel execution unit in
modern GPU workloads. This coordination enforces tempo-
ral locality among semantically equivalent memory requests
across GPUs, allowing in-switch merging logic to operate with
minimal buffering and maximal aggregation efficiency.

Fig. 8: Compiler and Architecture Support for TB Coordi-
nation. The compiler creates TB Groups according to data
dependency, and the architecture uses a synchronizer to align
request timing across GPUs.

1) Compiler-Guided TB Grouping: TB-Group Based Co-
ordination. To ensure temporal locality, CAIS organizes
mergeable TBs into logical TB-groups. As is shown in
Fig. 7(b), each TB-group contains all TBs across GPUs that
access the same data region using CAIS-tagged instructions
(e.g., ld.cais, red.cais). A switch-side merge tracker
monitors request arrival patterns for each group and address.
Only when requests from all participating GPUs are observed
for a given address does the switch perform merging. On
the GPU side, each SM uses lightweight hardware counters
to track TB-group progress. Once a TB issues a mergeable
request, it waits until a local readiness condition is met, either
via a credit mechanism or through switch, issued acknowledg-
ment, ensuring alignment with peer TBs on other GPUs.

Compiler Support. CAIS leverages compiler assistance
to identify TBs that are likely to issue mergeable mem-
ory requests and groups them accordingly. As illustrated in
Fig. 8(a), during the CUDA-to-PTX compilation stage, we
perform static index analysis on the address expressions of
memory access instructions. The analysis detects whether
the expression contains the GPU ID. If not, the index is
GPU-invariant, indicating that the instruction will access the
same memory location when other factors in the expression,
such as blockIdx, are identical. Consequently, TBs across
different GPUs but with the same blockIdx are expected to
access identical data. The compiler then groups such TBs into
logical TB Groups. During JIT compilation, memory access
instructions associated with these groups are replaced by their
CAIS variants (e.g., ld.cais, red.cais). Additionally, the
compiler attaches TB Group metadata to the kernel launch
configuration, which is used by the runtime and switch to
guide synchronization and merging behavior.

2) TB Group-Aware Synchronization Mechanisms: To en-
sure temporal alignment, CAIS introduces two synchroniza-
tion mechanisms, as shown in Fig. 7(d): (1) Pre-launch
synchronization. Before a TB is dispatched by the GPU’s
scheduler, it registers its Group ID with the local synchronizer.



This synchronizer then issues a synchronization request to
the switch. The TB remains in a pending state until the
switch confirms that all GPUs in the group have registered
corresponding TBs. Once the switch detects readiness across
all participating GPUs, it responds with release signals to
each GPU’s synchronizer, triggering concurrent TB dispatch.
This mechanism ensures aligned launches across devices
and prevents early-issued requests from bypassing potential
merge opportunities. (2) Pre-access synchronization. Even
with synchronized launches, compute divergence may cause
TBs to reach memory accesses at different times. When
a warp encounters its first *.cais instruction, it sends a
synchronization request tagged with the Group ID. Execution
proceeds only after all TBs in the group reach the same
point. Meanwhile, the warp scheduler can issue independent
instructions to hide synchronization latency.

The synchronization overhead is minimal because it is im-
plemented through the exchange of lightweight empty packets
between GPUs and the switch. For each TB, only two empty
packets are transmitted between each GPU and the switch.
The total latency corresponds merely to the round-trip time
between the GPU and the switch, approximately 0.5 µs in
our experimental setup, which is negligible compared with the
TB execution time. Furthermore, the synchronization scope is
strictly confined within each TB group and does not interfere
with resource sharing across different TB groups.

TB-Aware Request Throttling. To avoid stalls from out-
liers, CAIS introduces a TB-aware request throttling strategy.
When a GPU detects that it is ahead of its peer TBs in a
mergeable group, it temporarily throttles further requests to al-
low others to catch up. This feedback is driven by the switch’s
per-address tracking state and exposed to GPUs via a small
control interface. Importantly, this throttling is applied only to
mergeable TBs, preserving execution parallelism elsewhere.

3) Architecture Support for TB Group Synchronization.:
The coordination mechanism is supported by synchronizers
on GPUs and a Group Sync Table on the switch, as shown
in Fig. 8(b). (1)On the GPU side, each device incorporates
a synchronizer module that interfaces with the TB and warp
schedulers. The synchronizer maintains a small table tracking
active TB Groups and handles both pre-launch and pre-
access synchronizations by sending TB-group synchronization
request to the switch and waiting for a release signal. (2)On
the switch side, a lightweight Group Sync Table maintains
counters for each active TB Group. When synchronization
requests from all GPUs are received for a given Group ID,
the switch broadcasts a release signal, allowing execution to
proceed. This coordination ensures that mergeable requests
from different GPUs arrive within a narrow time window,
significantly increasing the success rate of request merging.

C. Graph-Level Dataflow Optimizer

CAIS also integrates a graph-level dataflow optimizer to
improve the system resource utilization. Graph-level dataflow
optimizer supports fine-grained TB-level dependency to un-
lock tighter kernel fusion opportunities. Built upon the fine-

Fig. 9: Graph-Level Dataflow Optimization. Fine-grained TB-
level data dependency enables early launch of consumer TBs
before producer kernels complete.

Fig. 10: Illustration of Asymmetric Traffic.

grained TB-level dependency, it introduces Asymmetric Ker-
nel Overlapping to balance complementary traffic between
two directions of the inter-chip link, which can significantly
improve the overall performance.

1) Fine-Grained TB Dependency and Deep Kernel Fusion:
In contrast to coarse-grained kernel-level dependency that
require the full completion of a producer kernel before the con-
sumer kernel can start, fine-grained TB-level dependency [1]
allows a TB in the consumer kernel ready to be launched
as soon as its input data available, without waiting for the
entire producer kernel to finish. This capability enables fused
execution of multiple dependent kernels.

Fig. 9(a) illustrates this concept with a portion of a trans-



former layer, where GEMM-1 computes matrix A, followed by
a layer normalization (LN) stage producing matrix B, which
is then consumed by GEMM-2. In CAIS, TBs in GEMM-
1 collaboratively produce tiles of matrix A; each TB in LN
operates on a row of A to generate matrix B; GEMM-2 TBs
consume tiles of B to compute the final output matrix. Com-
pared to the coarse-grained execution in Fig.9(c), since each
TB’s input dependencies are localized, execution of GEMM-2
can begin as soon as the corresponding TBs in GEMM-1 and
LN complete, unlocking a larger schedule optimization space.
As shown in Fig.9(d), this fine-grained chaining enables deep
kernel fusion and earlier launch of downstream TBs.

2) Asymmetric Kernel Overlapping: While in-switch merg-
ing reduces overall communication volume, it introduces
asymmetric bandwidth usage. Operations like GEMM-RS rely
on switch-to-GPU reduction traffic, whereas AG-GEMM gen-
erates GPU-to-switch load traffic, as is illustrated in Fig. 10.
For Fig. 10(a) the reduction operation, operands are read from
three GPUs and the result is written back to the destination
GPU. This causes the data traffic from GPUs to the switch
to be three times higher than that from the switch to the
GPUs, creating a bottleneck dominated by the GPU-to-switch
path. We refer to this phenomenon as asymmetric traffic. For
Fig. 10(b) the load operation, the situation is exactly the
opposite: the switch-to-GPU traffic is three times higher than
the GPU-to-switch traffic.

CAIS exploit the complementary nature of these two traffic
patterns to further optimize kernel fusion and improve overall
bandwidth utilization. Using TB-level dependency analysis,
CAIS identifies opportunities to pipeline kernels with com-
plementary traffic patterns. For example, when GEMM-RS
and AG-GEMM are ready to execute, SMs are partitioned
into two groups, each executing one kernel concurrently.
This interleaved execution, illustrated in Fig. 9(e), balances
bidirectional link usage: as GEMM-RS emits upstream traffic,
AG-GEMM consumes downstream data.

Traffic Control. When kernels with asymmetric communi-
cation patterns execute concurrently, contention on the G2S
link can still arise, particularly when both load and reduction
requests compete for bandwidth. CAIS introduces separate
virtual channels for load and reduction traffic and uses round-
robin arbitration to avoid head-of-line blocking.

Together, deep kernel fusion and asymmetric overlapping
maximize the bandwidth utilization and compute resources,
delivering significant end-to-end performance improvements.

IV. EXPERIMENTAL METHODOLOGY

A. Hardware Configuration

We simulate an 8-GPU system interconnected via four
NVSwitch units, replicating the topology of the NVIDIA
DGX-H100 [39]. To enable accurate modeling, we extend
Accel-Sim [23] with Hopper-specific architectural features and
configure the GPU parameters based on the NVIDIA H100
specifications [36]. For multi-GPU communication, we inte-
grate Accel-Sim with a customized BookSim2 [20], enabling

Name
Hidden

Size
FFN Hidden

Size
Attention

Heads
Sequence
Length

Batch
Size

Mega-GPT-4B 2048 8192 24 1024 16
Mega-GPT-8B 3072 12288 32 1024 12

LLaMA-7B 4096 11264 32 3072 3

TABLE I: LLM Settings Used in Evaluation.

concurrent execution across GPUs connected through a switch-
based interconnect.

We further modify both Accel-Sim and BookSim2 with
custom extensions to support the multimem instructions of
NVLS. Specifically, following NVIDIA’s NVLS design [24],
we augment the “router” in BookSim2 to support in-switch
multicast and reduction operations, and extend Accel-Sim to
handle the translation from multimem addresses to virtual
addresses at the Hub. The quantitative validation of our NVLS
simulation is detailed in Section V-E. For fair comparison, we
also augment T3 [43] with NVLS support by adopting the
DMA-based NVLS design proposed by NVIDIA [24].

The NVLink and NVSwitch are modeled using real device
parameters. NVLink is configured with a 16B flit size, a
single-flit header, and bidirectional data transfer. NVSwitch
employs round-robin arbitration with a 40 KB per-port Merge
Table (320 entries) and supports routing to forward requests
to their target GPUs. Each input port provides eight 256-depth
virtual channels. We implement intra-SM request coalescing,
aggregating multiple 32B sector requests into packets of up
to 128B to emulate NVLink’s burst transfer behavior. Link
latency between GPUs and switches (from GPU to switch or
from switch to GPU) is configured to 250 ns, resulting in a
round-trip latency of approximately 1 µs.

B. Benchmark

We evaluate CAIS using three representative LLMs, sum-
marized in Table I. Both training and inference phases are
evaluated, with inference focusing on the communication-
heavy prefill stage. The GEMM kernels are implemented using
CUTLASS [38]. Due to simulator memory constraints and
the long simulation time, simulating full-scale state-of-the-art
models is infeasible. To address this limitation, we employ
scaled-down LLM variants with key matrix dimensions, in-
cluding hidden size and FFN hidden size, reduced by 50%
compared to state-of-the-art large LLMs. This scaling reduces
the computation-to-communication ratio by 50%. To maintain
proportionality, we correspondingly reduce the number of SMs
by 50%. We validate this scaled-down setup in Section V-E.

C. Baseline

CAIS is evaluated against 9 baselines in four categories,
including 6 existing works and 3 NVLS-enhanced baselines.

• Tensor Parallelism with NVLS includes 1) Basic TP (TP-
NVLS) [49] that partitions model layers across GPUs and
applies AllReduce to merge intermediate results, and 2)
TP with Sequence Parallelism (SP-NVLS) [25] that
enhances TP by splitting AllReduce into ReduceScat-
ter and AllGather phases, with layer normalization and



Fig. 11: End-to-End Model Speedup Across Training and Inference.

Fig. 12: Sub-layer Performance Speedup.

dropout/Add operations interleaved to reduce memory
footprint. NVLS accelerates these collectives.

• Overlap Solutions includes 3) CoCoNet [19] and 4)
FuseLib [44], both of which enable GEMM-AllReduce
overlapping through software scheduling techniques, and
5) T3 [43] that introduces hardware-assisted fine-grained
overlapping between GEMM and ReduceScatter. We
extend T3 to also support AG-GEMM overlap in our
evaluation. These solutions do not leverage NVLS.

• Overlap Solutions with NVLS includes 6) CoCoNet-
NVLS, 7) FuseLib-NVLS, and 8) T3-NVLS, which
are enhanced variants of overlap solutions by integrating
NVLS support. As introduced in Sec. IV-A, CoCoNet-
NVLS and FuseLib-NVLS utilize extended multimem in-
structions, T3-NVLS adopts a DMA-based NVLS design.

• Locality-aware TB schedule places TBs across GPUs/dies
for reducing remote access, where we adopt the SOTA,
9) LADM [22]. LADM cannot utilize NVLS because of
its communication-centric design.

V. EXPERIMENTAL RESULTS

A. End-to-End and Sub-Layer Speedup

1) End-to-End Model Speedup: Figure 11 shows the end-
to-end speedup of CAIS over nine baseline methods: TP-
NVLS, SP-NVLS, CoCoNet, FuseLib, T3, CoCoNet-NVLS,
FuseLib-NVLS, T3-NVLS, and LADM. We also include
a stripped-down version, CAIS-Base, which disables the
proposed merging-aware TB coordination and graph-level
dataflow optimizer. For inference, CAIS achieves up to 1.43×,
1.95×, 1.99×, 1.92×, 1.65×, 1.28×, 1.24×, 1.49×, and

7.80× speedup over these nine baselines, with geometric
means of 1.38×, 1.89×, 1.98×, 1.90×, 1.61×, 1.25×, 1.21×,
1.45×, and 7.60×, respectively. For training, CAIS achieves
up to 1.44×, 1.96×, 2.03×, 1.96×, 1.65×, 1.30×, 1.25×,
1.49×, and 7.75× speedup over these baselines with geometric
means of 1.37×, 1.89×, 1.96×, 1.89×, 1.60×, 1.23×, 1.20×,
1.45×, and 7.59×, respectively. These results highlight the
significant performance advantages obtained by our proposed
compute-aware in-switch computing, as well as leveraging
architectural and scheduling co-design optimization to improve
the temporal alignment and enhance bandwidth utilization.

2) Sub-Layer Performance: Figure 12 reports the perfor-
mance of four communication-intensive sub-layers across the
model execution flow: [L1] Output projection → LayerNorm
→ First FFN layer (forward); [L2] Second FFN layer → Lay-
erNorm → Input projection (forward); [L3] First FFN layer
→ LayerNorm → Output projection (backward); [L4] Input
projection → LayerNorm → Second FFN layer (backward).

These sub-layers involve GEMM-RS + LN + AG-GEMM,
making them ideal candidates for graph-level optimization
in CAIS. CAIS consistently outperforms all baselines across
these sub-layers, with up to 1.53×, 2.05×, 2.11×, 2.04×,
1.67×, 1.36×, 1.31×, 1.51×, and 8.08× speedup over TP-
NVLS, SP-NVLS, CoCoNet, FuseLib, T3, CoCoNet-NVLS,
FuseLib-NVLS, T3-NVLS, and LADM, and corresponding
geometric means of 1.39×, 1.91×, 1.99×, 1.91×, 1.64×,
1.24×, 1.20×, 1.47×, and 7.90× speedup.

3) Discussions and Analysis: The improvements over TP-
NVLS and SP-NVLS mainly stem from CAIS’s native fine-
grained computation-communication overlap derived from the



compute-aware in-switch computing. Unlike communication-
centric in-switch computing, where the global barrier isolates
computation and communication phases, compute-aware in-
switch computing only requires the TB-level local barrier,
enabling native fine-grained overlapping between computa-
tion and communication across different TBs. Besides the
computation-communication isolation, SP-NVLS also suffers
from the low bandwidth utilization incurred from asymmetric
communication patterns when accelerating Reduce-Scatter and
AllGather with in-switch computing.

CoCoNet-NVLS, FuseLib-NVLS, and T3-NVLS represent
the NVLS-enhanced performance of CoCoNet, FuseLib, and
T3. Compared to CoCoNet-NVLS and FuseLib-NVLS, CAIS
supports flexible overlapping that also overlaps the commu-
nication with the following GEMM. CAIS also eliminates
the need for code modification when implementing kernel
fusion and mitigates resource contention between compute
and communication kernels in CoCoNet-NVLS. Although
FuseLib-NVLS executes within a single fused kernel, thereby
eliminating kernel-launch overhead and mitigating resource
contention, CAIS achieves higher efficiency by enabling more
flexible and fine-grained overlap between computation and
communication. Compared to T3-NVLS, a hardware-based
overlapping solution, CAIS demonstrates notable gains. T3-
NVLS still suffers from coarse-grained dependency among
ReduceScatter, LN, and AllGather stages, which prevents
fine-grained optimization opportunities therefore still cannot
tackle the asymmetric communication pattern. In contrast,
CAIS’s fine-grained TB-level scheduling and asymmetric ker-
nel overlapping unlock additional concurrency and balance
inter-GPU bandwidth across two directions. Finally, LADM,
though a state-of-the-art locality-aware TB scheduling method
for general GPU kernels, focuses on intra-GPU locality rather
than inter-GPU communication, and does not leverage NVLS-
based acceleration, limiting its applicability to communication-
intensive TP workloads.

Comparing CAIS with CAIS-Base reveals the impact of
our merging-aware TB coordination and graph-level dataflow
optimizer. The maximum and geomean speedups of 1.49× and
1.45× on end-to-end models 1.46× and 1.43× on end-to-end
models inference and 1.46× and 1.42× on training, and 1.51×
and 1.47× on sub-layers, respectively. These results confirm
that merely breaking the global barrier through compute-aware
ISA and microarchitectural extensions is insufficient; fully re-
alizing the performance potential requires further optimization
within the unlocked scheduling space, leveraging temporal
locality and graph-level dataflow integration.

B. Detailed Performance Analysis

This section investigates the effectiveness of key architec-
tural techniques within CAIS, including merging-aware TB
coordination and graph-level dataflow optimizer.

1) Impact of Merging-Aware TB Coordination: The
merging-aware TB coordination mechanism significantly re-
duces the waiting time for request merging at the switch
by improving the temporal alignment of memory requests

Fig. 13: (a) Required Merge Table Size with and without
Merging-Aware TB Coordination. CAIS reduces the minimal
table size needed to merge all eligible requests by 87%. (b)
Ablation studies for TB coordination.

Fig. 14: Performance Sensitivity to Merge Table Size. CAIS
maintains high performance with small table sizes, while the
uncoordinated version degrades rapidly.

across GPUs. Figure 13 reports the minimal Merge Table
size required to merge all mergeable requests for each sub-
layer. Without coordination (CAIS-w/o-Coord), the minimal
required table size can reach up to 250 KB per port. With
coordination enabled, the minimal required table size drops
below 40 KB across all ports, which is an 87% reduction
in minimal required table size. This result suggests that our
coordination strategy can achieve a more effective use of
limited switch resources. Figure 13(a) also demonstrates that
the minimal required table sizes of CAIS are insensitive to the
model sizes and configurations, and are consistently below 40
KB under different model sizes and configurations.

Figure 13(b) further evaluates the effectiveness of each
optimization. We measure the improvement using the average
waiting time, defined as the delay between the earliest and
latest requests targeting the same address. This metric directly
reflects the temporal locality optimized by TB coordination.
The results show that each optimization step progressively
enhances temporal locality, reducing the waiting time from
35 µs to less than 3 µs.

Figure 14 complements this analysis by showing how coor-
dination affects performance under varying Merge Table sizes
for the LLaMA-7B model. Merging-aware TB coordination
maintains high performance even when the switch buffer is
small, while the uncoordinated version degrades rapidly. These
comparisons emphasize the importance of merging-aware TB
coordination for compute-aware in-switch computing.



Fig. 15: Average Bandwidth Utilization per Sub-layer.

Fig. 16: Bandwidth Utilization over Time for (a) CAIS-Base,
(b) CAIS-Partial, and (c) CAIS.

2) Impact of Graph-Level Dataflow Optimizer: Our pro-
posed graph-level dataflow optimizer allows concurrent exe-
cution of dependent kernels with complementary asymmetric
communication patterns. This optimization improves overall
bandwidth utilization by balancing traffic across GPU-to-
switch and switch-to-GPU links.

Figure 15 illustrates this effect by comparing the average
bandwidth utilization, which is the average across all links
and two directions for each link, for all sub-layers of three
configurations: (a) CAIS-Base, (b) CAIS with graph-level
dataflow optimizer but without traffic control (CAIS-Partial),
and (c) full CAIS. Bandwidth utilization improves from 62.4%
(CAIS-Base) to 84.7% (CAIS-Partial) and 90.2% (CAIS). The
gain from CAIS-Base to CAIS-Partial comes from asymmetric
kernel overlapping that tackles the imbalance data movement
in both link directions, while the final jump to CAIS reflects
the benefit of traffic control.

To further analyze the sustained behavior of these improve-
ments, Figure 16 presents the bandwidth utilization over time
for the L2 sub-layer of LLaMA-7B. CAIS maintains near-
peak utilization (∼100%) during steady-state operation, while
the partial configuration (CAIS-Partial) suffers dips due to
contention. The base configuration shows the lowest and most
fluctuating utilization. This demonstrates the importance of

dataflow optimization and traffic control.
Together, these analyses demonstrate that the graph-level

dataflow optimizer is essential to unlocking the full potential
of compute-aware in-switch computing.

C. Scalability Analysis
1) Performance Scalability: To demonstrate the perfor-

mance scalability of CAIS, we evaluate CAIS and CoCoNet-
NVLS across different numbers of GPUs based on the
LLaMA-7B model. We also scale the model’s hidden dimen-
sion proportionally to the number of GPUs to avoid under-
utilization of computation resources. Figure 17 shows the
performance scalability of CAIS and CoCoNet-NVLS, where
we measure per-GPU computation throughput normalized to
8-GPU CAIS. It shows that the per-GPU throughput decreases
slightly when increasing the number of GPUs. Even with 32
GPUs, the performance drop is still within 5% compared with
8 GPUs. Both CAIS and CoCoNet-NVLS can consistently
have superior performance, regardless of the number of GPUs.

2) Hardware Cost Scalability: CAIS hardware exhibit ex-
cellent scalability as the number of GPUs increases, owing to
a constant and low upper bound on the total required merging
table size at the system level. This table size corresponds to
the amount of data associated with all outstanding remote
requests in the system. CAIS leverages merge-aware coordi-
nation to synchronize potentially mergeable requests before
they are issued to the switch. This ensures that all GPUs
issue outstanding requests for the same set of data, enabling
deterministic merging at the switch. As a result, the total
required merging table size is bounded by the outstanding
remote requests from a single GPU, rather than scaling with
the number of GPUs. In addition, CAIS’s request throttling
mechanism further limits the number of outstanding remote
requests per GPU, reducing the actual memory footprint. In
our evaluated 8-GPU system, the system-wide upper bound
is 1280 KB, corresponding to just 40 KB per switch port.
Importantly, this bound remains unchanged even as the number
of GPUs increases. Therefore, as the system scales, the relative
hardware overhead decreases, since the size of the base switch
circuitry grows with GPU count while the enhanced logic
remains constant. This bounded memory overhead ensures
the scalability and practicality of CAIS’s hardware extensions
across large-scale multi-GPU deployments.

D. Hardware Overhead
We evaluate our hardware overhead under TSMC’s 12nm

process technology. Our hardware modification for the switch
occupies about 0.50mm2, which is less than 1% of NVIDIA’s
NVSwitch die [17], [24]. On the GPU side, the added logic for
TB-group-based synchronization consumes only 0.019mm2

per die, less than 0.01% of the H100 GPU area. These
results confirm that our proposed architectural support is cost-
effective and hardware-feasible.

E. Methodology Validation
This section validates our experimental methodology from

two aspects: 1) fidelity of a scaled-down configuration for both



Fig. 17: Scalability with In-
creasing GPU Count

Fig. 18: Validation of Our
Simulated NVLS.

Setup
Hidden

Size
FFN Hidden

Size
Attention

Heads # SM
CAIS Speedup
Over TP-NVLS

Full 8192 22528 64 132 1.43
Half 4096 11264 32 66 1.40

TABLE II: Experimental Validation of Scaling-down Setup.

LLM size and GPU resources, and 2) accuracy of our NVLS-
enabled simulator with support for multimem instructions.

For scaled-down setup, we compare two systems: a full-
scale GPU executing a full-sized LLM that is feasible on
Accel-Sim, and a half-scale system with 50% fewer SMs
running the same model with matrix dimensions halved. As
reported in Table II, the half-scale configuration faithfully
reproduces full-scale speedup ordering and magnitudes, pre-
serving system-level behavior and key insights derived.

To validate NVLS support in simulation, we measure All-
Reduce performance using NCCL [40] on both real hardware
and our simulator across message sizes from 1 GB to 16 GB
(1, 2, 4, 8, 16 GB). As shown in Fig. 18, simulated results
closely match the real-system measurements, yielding high
fidelity with an average error of only 3.87%.

VI. RELATED WORK

To mitigate the communication bottleneck, prior works
have proposed various optimizations. These can be broadly
categorized into two types: 1) communication-computation
overlapping [4], [19], [43], [44], [52] and 2) memory efficiency
improvement [25], [27]. CoCoNet [19] pioneered the idea
of overlapping computation and AllReduce in TP through
software pipelining, while [44] further reduces kernel-launch
overhead using a similar software-based approach. T3 [43]
proposes hardware primitives to enable fine-grained kernel
overlap. Centauri [4] proposes overlapping in hybrid paral-
lelism. However, directly applying these techniques to NVLS
still fails to achieve effective overlap, since NVLS follows
a communication-centric philosophy that lacks awareness of
computation semantics, a limitation that CAIS explicitly re-
solves. Although ACE [46] adopts an in-network computing
approach, it primarily reduces DRAM data accesses. Some
prior studies have also explored locality-aware TB schedul-
ing [3], [22], [34], but they primarily reduce remote memory
access volume across GPUs. CAIS aims to enhance the
temporal locality for better request merging.

VII. CONCLUSION

We present CAIS, a compute-aware in-switch computing
framework that provides aligned communication mode with
LLM computation kernels. CAIS advances NVLS from a
communication-centric primitive accelerator to a compute-
integrated, semantics-aligned in-switch computing framework,
enabling fine-grained overlap that improves end-to-end LLM
system efficiency. CAIS introduces the compute-aware ISA
and microarchitecture extension to enable compute-aware in-
switch computing, and integrates merge-aware TB coordina-
tion and graph-level dataflow optimizer to unlock the full po-
tential of compute-aware in-switch computing. Our evaluation
on representative LLMs shows that CAIS delivers significant
performance gains over the SOTA solutions.
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