
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 1

Caffeine: Towards Uniformed Representation and Acceleration
for Deep Convolutional Neural Networks

Chen Zhang,1,2 Guangyu Sun,1 Zhenman Fang,2 Peipei Zhou,2 Peichen Pan,3 Jason Cong1,2,3

1Center for Energy-effcient Computing and Applications, Peking University, Beijing, China
2Center for Domain-Specific Computing, University of California, Los Angeles, US

3Falcon Computing Solutions Inc., Los Angeles, US

Abstract—With the recent advancement of multilayer convolutional
neural networks (CNN) and fully connected networks (FCN), deep
learning has achieved amazing success in many areas, especially in visual
content understanding and classification. To improve the performance
and energy efficiency of the computation-demanding CNN, the FPGA-
based acceleration emerges as one of the most attractive alternatives.

In this paper we design and implement Caffeine, a hardware/ soft-
ware co-designed library to efficiently accelerate the entire CNN and
FCN on FPGAs. First, we propose a uniformed convolutional matrix-
multiplication representation for both computation-bound convolutional
layers and communication-bound fully connected (FCN) layers. Based
on this representation, we optimize the accelerator micro-architecture
and maximize the underlying FPGA computing and bandwidth resource
utilization based on a revised roofline model. Moreover, we design an
automation flow to directly compile high-level network definitions to the
final FPGA accelerator. As a case study, we integrate Caffeine into the
industry-standard software deep learning framework Caffe. We evaluate
Caffeine and its integration with Caffe by implementing VGG16 and
AlexNet networks on multiple FPGA platforms. Caffeine achieves a peak
performance of 1,460 GOPS on a medium-sized Xilinx KU060 FPGA
board; to our knowledge, this is the best published result. It achieves
more than 100x speed-up on FCN layers over prior FPGA accelerators.
An end-to-end evaluation with Caffe integration shows up to 29x and 150x
performance and energy gains over Caffe on a 12-core Xeon server, and
5.7x better energy efficiency over the GPU implementation. Performance
projections for a system with a high-end FPGA (Virtex7 690t) show even
higher gains.

Index Terms—convolutional neural network, deep learning, Caffe, CNN
FPGA engine, hardware/software co-design.

I. INTRODUCTION

In the last few years, deep learning has achieved amazing success
in many areas, especially in computer vision and speech recogni-
tion. Among various deep learning algorithms, CNN (convolutional
neural networks) has become the most popular for visual content
understanding and classification, with significantly higher accuracy
than traditional algorithms in various compute vision tasks such as
face recognition, image and video processing [1–3]. Now CNN is
becoming one of the key algorithms in many modern applications,
and is attracting enthusiastic interest from both the academic com-
munity [1, 3, 4] and industry heavyweights like Google , Facebook
, and Baidu [5–7]. With the increasing image classification accuracy
improvements, the size and complexity of the multilayer neural
networks in CNN have grown significantly, as evidenced by the
rapid evolvement of real-life CNN models such as AlexNet, ZFNet,
GoogleLeNet, and VGG [8–11]. This puts overwhelming computing
pressure on conventional general-purpose CPUs in light of the recent
slowdown of Moore’s law. Therefore, various accelerators—based on
GPUs, FPGAs, and even ASICs—have been proposed to improve the
performance of CNN designs [12–15]. Due to its low power, high
energy efficiency, and reprogrammability, the FPGA-based approach
is now one of the most promising alternatives and has stimulated
extensive interest [13, 16–29].

Most prior FPGA acceleration studies on CNN [13, 16–22,
26] mainly focus on the convolution layer in CNN, since it is
computation-bound and is the most timing-consuming layer. How-
ever, this leads to three limitations. First, other unaccelerated layers

in CNN cannot get that high energy efficiency from FPGAs. Second,
there is significant intermediate data communication overhead be-
tween unaccelerated layers on a CPU and the accelerated convolution
(CONV) layer on an FPGA through the PCIe connection, which
diminishes the overall performance gains [30]. Third, after the
FPGA acceleration of the CONV layer, other layers—especially the
indispensable fully connected (FCN) layer that is communication-
bound—can become the new bottleneck in CNN. Based on our
profiling (detailed in Section II-B), the FCN layer actually occupies
more than 50% of the total execution time in CNN after the CONV
layer is accelerated on an FPGA.

To address the above limitations, two of the latest studies [23, 24]
started implementing the entire CNN on an FPGA. The work [23]
transforms a convolution layer into a regular matrix-multiplication
(MM) in the FCN layer, and implements an MM-like accelerator
for both layers. The other work [24] takes an opposite approach:
it transforms a regular MM into a convolution, and implements a
convolution accelerator for both CONV and FCN layers. While these
two studies make a good start on accelerating the entire CNN on an
FPGA, the straightforward transformation does not consider potential
optimizations. They demonstrated a performance of approximately
1.2 giga fixed point operations per second (GOPS), leaving large
room for improvement.

In this paper we aim to address the following key challenges in
efficient FPGA acceleration of the entire CNN. First, what is the
right mathematical representation for a uniformed acceleration of
the computation-bound CONV layer and the communication-bound
FCN/DNN layer?1 Second, how do we design and implement an
efficient and reusable FPGA engine for CNN that maximizes the
underlying FPGA computing and bandwidth resource utilization,
while still maintaining enough programmability for various layer
configurations? Third, how do we provide software programmers an
easy-to-use interface such that they can still write high-level network
definitions while taking advantage of our Caffeine FPGA engine?

To find the right programming model and efficient implementation
for CNN kernels, we first analyze the widely used regular MM
representation in most CPU and GPU studies. These studies usually
convert a convolution layer to a regular MM in the FCN layer,
and leverage the well-optimized (with vectorization) CPU libraries
like Intel MKL and GPU libraries like cuBLAS for a regular MM
[12, 31]. However, the convolutional MM to regular MM transfor-
mation requires data duplication in CNN. According to our study,
this duplication results in up to 25x more data volume for the input
feature maps in the CONV layer, and thus diminishes the gains of
FPGA acceleration considering that FPGA platforms have extremely
limited bandwidth (about 10 to 20 GB/s [32]) compared to CPU/GPU

1As analyzed in Section II-B, other layers in CNN are relatively simple
and have marginal impact on the final performance and FPGA resource
consumption. We do implement those layers in the same FPGA, but we will
mainly discuss the CONV and FCN layers in this paper for simplicity. Note
that the FCN layer is also a major component of deep neural networks (DNN)
that are widely used in speech recognition. For simplicity, we just use the term
”FCN.”

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 2

platforms (up to 700GB/s [33]). More importantly, according to our
study in Section III-C, the FPGA effective bandwidth is very sensitive
to memory access burst lengths, which requires a more careful design
for bandwidth-bound FCN layers on FPGAs.

To avoid the data duplication and improve the bandwidth utiliza-
tion, we propose to use a convolutional MM representation. Instead
of a straightforward mapping in prior work [24], we batch a group
of input feature maps in the FCN layer together into a single one in
the new representation, which we call input-major mapping, so as to
improve the data reuse of the weight kernels. Another alternative of
this input-major mapping is achieved by reversing the input feature
map matrix and weight kernel matrix, which we call weight-major
mapping, based on the observation that the latter matrix is much
larger than the former one in the FCN layer. As a result, the weight-
major mapping may have more data reuse, especially for the input
feature maps which are easier to be reused by each weight access than
those in the input-major mapping considering the hardware resource
limitation. Considering the complex data reuse and memory burst
access under the hardware resource limitation, it is quite challenging
to identify which one is absolutely better between the input-major and
weight-major convolutional mappings. For a quantitative comparison,
we apply an accurate roofline-based model to guide their design space
explorations under different neural network shapes and batch sizes.

Based on the above uniformed representation, we design and
implement an efficient and reusable CNN/DNN FPGA accelerator en-
gine called Caffeine.2 First, Caffeine maximizes the FPGA computing
capability by optimizing multilevel data parallelism within CNN, as
well as fine-grained and coarse-grained pipeline parallelism. Second,
Caffeine maximizes the underlying memory bandwidth utilization by
combining both on-chip and off-chip data reorganizations for the
convolutional MM representation. As a result, Caffeine can achieve
high performance for both the computation-bound CONV layer and
communication-bound FCN layer (more than 100x speed-up over
prior work [24]). To improve the portability of Caffeine across
different FPGA platforms, we design our FPGA accelerator in a
systolic-like micro-architecture using high-level synthesis (HLS) so
that it can be easily scaled up to a larger design [36]. In addi-
tion, Caffeine also supports various CNN layer configurations with
different precision requirements (i.e., both floating-point and fixed-
point operations). Finally, we further provide an automation flow for
software programmers so that they can easily take advantage of our
FPGA accelerator engine while still programming the high-level CNN
networks, just as they do for CPUs and GPUs. Our automation flow
directly parses CNN network definitions—including the number and
size of input/output feature maps, shape and strides of weight kernels,
pooling size and stride, ReLU kernels, and the total number of
CNN/DNN layers—and compiles them into our hardware-customized
instructions and reorganized weight models. Once the instructions and
weights are written to the FPGA, all the layers are then computed
on FPGA without the CPU interaction. As a case study, we have
integrated Caffeine with the industry-standard Caffe deep learning
framework [12], such that the broad Caffe users can directly benefit
from the performance and energy gains of our Caffeine FPGA engine
without experiencing any programming difference.

In our experiments we conduct an end-to-end comparison of
the Caffe-Caffeine integration to existing optimized CPU and GPU
solutions. Caffeine achieves a peak performance of 1,460 GOPS with
the widely used 8-bit fixed-point operations on a medium-sized Xilinx
KU060 FPGA board. Compared to Caffe running on a 12-core Xeon

2The name Caffeine comes from CAFfe Fpga EngINE, but it is a generic
library and not limited to the CAFFE. It can also be extended for other
frameworks like Torch and TensorFlow [34, 35].

Fig. 1: Overview of Caffeine Framework

CPU, the Caffe-Caffeine integration achieves a 7.3x performance
speed-up and 43.5x energy saving with 16-bit fixed-point operations,
and 29x performance speed-up and 150x energy saving with 8-bit
fixed-point operations. Compared to the GPU solution [12] running
on a Nvidia GTX1080 GPU, we show 2x (batch = 16) and 5.7x
(batch = 1) better energy efficiency for 8-bit fixed-point operations,
and for FPGA 16-bit fixed-point operations, 0.58x (batch = 16)
and 1.6x (batch = 1) energy efficiency over GPU, respectively. The
performance and energy gains are even higher when projecting to a
larger FPGA board, such as the Xilinx VC709 board used in this
paper.

We summarize our Caffeine work in Figure 1. At the top of
Figure 1 is the high-level network definitions for CNN, e.g., the
definitions used in Caffe which can be compiled into the underlying
hardware. On the left side of Figure 1 is the existing CNN layer
representation and optimization libraries on CPU and GPU devices.
Caffeine complements existing frameworks with an FPGA engine. In
summary, this paper makes the following contributions.
1. We propose a uniformed mathematical representation (convo-

lutional MM) for efficient FPGA acceleration of both CONV
and FCN layers in CNN/DNN. In addition, we also propose a
novel optimization framework based on the roofline model to
find the optimal mapping of the uniformed representation to the
specialized accelerator. Our optimization framework recommends
weight-major mapping and input-major mapping according to
platform constraints and NN configurations.

2. We customize a HW/SW co-designed efficient and reusable
CNN/DNN engine called Caffeine, where the FPGA accelerator
maximizes the utilization of computing and bandwidth resource.
Caffeine achieves a peak performance of 1,460 GOPS for the
CONV layer and 346 GOPS for the FCN layer with 8-bit fixed-
point operations on a medium-sized FPGA board (KU060).

3. We provide an automation flow for users to program CNN in high-
level network definitions, and the flow directly generates the final
FPGA accelerator. We also provide the Caffe-Caffeine integration,
which achieves 29x and 150x end-to-end performance and energy
gains over a 12-core CPU and 5.7x better energy efficiency over
a GPU.

II. CNN OVERVIEW AND ANALYSIS

A. Algorithm of CNNs

As a typical supervised learning algorithm, there are two major
phases in CNN: a training phase and an inference (aka feed-forward)
phase. Since many industry applications train CNN in the background
and only perform inferences in a real-time scenario, we mainly focus
on the inference phase in this paper. The aim of the CNN inference
phase is to get a correct inference of classification for input images.
Shown in Figure 2, it is composed of multiple layers, where each
image is fed to the first layer. Each layer receives a number of feature
maps from a previous layer and outputs a new set of feature maps
after filtering by certain kernels. The convolutional layer, activation

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 3

Fig. 2: Inference (aka feedforward) phase in CNN

layer, and pooling layer are for feature map extraction, and the fully
connected layers are for classification.

Convolutional (CONV) layers are the main components of CNN.
The computation of a CONV layer is to extract feature information
by adopting a filter on feature maps from a previous layer. It receives
N feature maps as input and outputs M feature maps. A set of N
kernels, each sized in K1 × K2, slide across corresponding input
feature maps with element-wise multiplication-accumulation to filter
out one output feature map. S1 and S2 are constants representing the
sliding strides. M sets of such kernels can generate M output feature
maps. The following expression describes its computation pattern.

Out[m][r][c] =

N∑
n=0

K1∑
i=0

K2∑
j=0

W [m][n][i][j] ∗ In[n][S1 ∗ r+ i][S2 ∗ c+ j];

Pooling (POOL) layers are used to achieve spatial invariance by
sub-sampling neighboring pixels, usually finding the maximum value
in a neighborhood in each input feature map. So in a pooling layer,
the number of output feature maps is identical to that of input feature
maps, while the dimensions of each feature map scale down according
to the size of the sub-sampling window.

Activation (ReLU) layers are used to adopt an activation function
(e.g., a ReLU function) on each pixel of feature maps from previous
layers to mimic the biological neuron’s activation [8].

Fully connected (FCN) layers are used to make final predictions.
An FCN layer takes “features” in a form of vector from a prior
feature extraction layer, multiplies a weight matrix, and outputs a new
feature vector, whose computation pattern is a dense matrix-vector
multiplication. A few cascaded FCNs finally output the classification
result of CNN. Sometimes, multiple input vectors are processed
simultaneously in a single batch to increase the overall throughput, as
shown in the following expression when the batch size of h is greater
than 1. Note that the FCN layers are also the major components
of deep neural networks (DNN) that are widely used in speech
recognition.

Out[m][h] =
∑N

n=0W [m][n] ∗ In[n][h]; (1)

B. Analysis of Real-Life CNNs

State-of-the-art CNNs for large visual recognition tasks usually
contain billions of neurons and show a trend to go deeper and larger.
Table I lists some of the CNN models that have won the ILSVRC
(ImageNet Large-Scale Visual Recognition Challenge) contest since
2012. These networks all contain millions of neurons, and hundreds
of millions of parameters that include weights and intermediate
feature maps. Therefore, storing these parameters in DRAM is
mandatory for those real-life CNNs. In this work we will mainly
use the 16-layer VGG16 model [11].

TABLE I: Recent CNN models that won the ILSVRC contest
Real-life CNNs Year Neurons layers Parameters

AlexNet [8] 2012 650,000 8 250 MB
ZFNet [9] 2013 78,000,000 8 200 MB
VGG [11] 2014 14,000,000 16 500 MB

Table II shows two key points. First, the CONV and FCN layers
present two extreme features. CONV layers are very computation-
intensive: they contain 19.3% of total data but need 99.5% of
computation. FCN layers are memory-intensive: they need 0.4% of
arithmetic operations but use 80.6% of the total amount of data.

These two layers also occupy most of the execution time (more than
99.9%). Second, when CONV is accelerated, the FCN layer becomes
the new bottleneck, taking over 50% of computation time. Therefore,
we need to accelerate the entire CNN on an FPGA and maximize the
use of both FPGA’s computation and bandwidth efficiency. Since a
straightforward acceleration of the POOL and ReLU layers is good
enough due to their simplicity, in this paper we will mainly focus on
discussing how to accelerate both the CONV and FCN layers.

TABLE II: Computation complexity, storage complexity, and execution
time breakdown of CNN layers in the VGG16 model

CONV POOL ReLU FCN
Comput. ops(107) 3E3(99.5%) 0.6(0%) 1.4(0%) 12.3(0.4%)
Storage (MB) 113(19.3%) 0(0%) 0(0%) 471.6(80.6%)
Time% in pure sw 96.3% 0.0% 0.0% 3.7%
after CONV acc 48.7% 0.0% 0.0% 51.2%

III. SPECIALIZED CONVOLUTION ACCELERATOR

There are several design challenges that are an obstacle to an
efficient convolution accelerator design on an FPGA platform. First,
the organization of processing elements (PEs) and buffer banks should
be carefully designed in order to process on-chip data efficiently.
Second, loop tiling is mandatory to fit a small portion of data on-chip,
and the computation of an entire CONV layer includes many itera-
tions of off-chip data transfers. Improper off-chip memory accesses
may degrade the utilization of bandwidth and parallelism of on-
chip data processing. Third, integration with high-level frameworks
such as Caffe not only needs to guarantee optimal performance with
customized optimizations, but also requires enough programmability
of the specialized hardware.

In the following subsections, we start from the original convolution
code in Figure 3 and apply a combination of optimizations to
achieve a high-performance specialized hardware accelerator design.
Section III-A presents an overview of the computation model and
SW/HW co-designed framework. Section III-B provides on-chip
computation engine design optimization, and Section III-C provides
memory access optimization.
A. Convolution Accelerator Overview

The computation pattern of a convolution layer is shown in Fig 3.
Variables in red are all layer parameters, which are set in CNN
training and usually differ among layers. CNN computations involve
three types of data: 1) weights and biases, 2) input and output feature
maps/images, and 3) CNN network definitions. Real scenario CNNs
usually contain a large volume of data, ranging from hundreds of
mega bytes to several giga bytes, and a large number of layers,
ranging from tens to hundreds of layers.

Loop tiling and computation model on FPGA. FPGAs have
limited BRAM and DSP resources. In order to support real-life CNNs
with hundreds of mega bytes or even giga bytes of weights and feature
maps, our CNN accelerator design puts all the data in DRAM and
caches a part of weights, feature maps and layer definitions in on-
chip buffers before they are fed to processing engines (PEs). We call
each small part a data tile. Figure 3 shows a standard convolution
layer’s computation procedure. We further apply loop tiling to fit a
convolution layer to the FPGA. In CNN structure designs, variables
R and C (for the ”rows” and ”columns” of pixels in feature maps)
range from tens to thousands; variables N and M (for the number
of input and output feature maps) range from tens to hundreds; KEL
(for convolution kernel size) ranges from one to ten. So we do not
tile on loops ”k1 & k2” because of their small sizes. Other loops are
tiled into ”tile loops” and ”point loops.” Point loops are for on-chip
data’s computation, whose optimization is discussed in Section III-B.
Tile loops are for bringing data tiles on-chip, whose optimizations are
discussed in Section III-C. Figure 4 shows a pseudo code of a tiled
convolution layer.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 4

Fig. 3: Pseudo code of a convolution layer

Fig. 4: Pseudo code of a tiled convolution layer

Software-definable parameters and accelerator design. As
described in Figure 3, a convolution layer is featured by a set
of parameters <M, N, R, C, K1, K2, S>. In order to enable
our accelerator’s programmability by software at run time without
changing the FPGA bitstream, we set parameters <M, N, R, C, K1,
K2, S> (which are variables in the blank rectangle in Figure 4)
to be software-definable parameters. In our specialized hardware
design, we make them registers to control loop pipelines and could
be reset by decoding accelerator-specific instructions during runtime.
Our Caffeine library provides an automation flow to translate high-
level languages to the accelerator-specific instructions.

Hardware-definable parameters and accelerator design. Ex-
cept for software-definable parameters, the other parameters in
Figure 4 are hardware-definable parameters, which are labeled in
the black rectangle ”OutBRAMSize & InBRAMSize & KernelSize”
for buffer sizes, ”To & Ti” for parallel PEs and ”Data type” for
floating/fixed<bit-width> point operators. Their values determine
hardware design’s number of parallel PEs as well as size of buffer
sets on the FPGA. They are set before bit-stream synthesis. Larger
values of ”OutBRAMSize & InBRAMSize & KernelSize” result in
more BRAM utilization and larger values of ”To & Ti” result in
more parallel PEs. Whenever a user wants to switch to a new FPGA
device (with larger or smaller number of BRAM/DSP resources), they
can simply reset hardware-definable parameters to customize a new
accelerator bitstream with our library.

B. Scalable Accelerator Architecture

Figure 5 shows the original code of on-chip computation, and
Figure 6 shows the computation structure after our optimization; these
are described in the following paragraphs.

Multilevel data parallelism. We implement two levels of data
parallelism as suggested in [13] for the sake of better hardware
utilization and circuit simplicity: 1) parallelism in computing multiple
output feature maps; and 2) parallelism in processing multiple input
feature maps for each output feature map. Each PE is an arithmetic
multiplication of input feature map pixels and corresponding weights.
An array of adder trees sums up the convolution results. The total
number of PEs is defined by To × Ti in Figure 4.

Fine-grained pipeline parallelism. In order to fully utilize com-
putation resource, our accelerator aims to achieve a pipeline initial
interval (II) of 1; i.e., each PE is able to process a pair of input data

Fig. 5: Pseudo code of original on-chip computation

Fig. 6: Pseudo code of optimized on-chip computation

Output

Buffer

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

+ +

+
... ...

+ +

+
... ...

+ +

+
... ...

+ +

+
... ...

R
e
L

U

P
O

O
L

Internal Interconnect

DRAM

Computation Engine

On-chip buffers

Fig. 7: Scalable accelerator architecture design

on every cycle. We use a polyhedral-based optimization framework
[37] to optimize the pipelining schedule by permuting the ‘p’, ‘q’, ‘r’,
‘c’ loop levels to avoid loop carried dependence. Since pooling layers
and ReLU layers are usually an optional layer following convolution
layers, we also implement them in the instruction pipeline so that they
can be processed immediately on convolution’s output. They can also
be bypassed if there is no such layer following a convolution layer
They can also be configured through software-definable parameters.

Coarse-grained pipeline parallelism. All of the layers’ weight
and input/output feature maps are initially stored in DRAM, and
layers are computed one by one. On each layer’s computation, a
tile of input feature maps and weights are fetched on FPGA local
buffers. We use the double buffering technique to prefetch the next
data tile for each PE so that the computation time can overlap with
the data transfer overhead from the device DRAM to FPGA’s BRAM.

Scalable architecture. The computations shown in Figure 6 are
a typical map and reduction pattern. We further use a systolic-
like architecture to implement the above computations so that the
hardware design could be scalable to a larger device with more
parallel engines. Figure 7 presents an overview of our scalable
accelerator architecture, which is designed in portable high-level
synthesis (HLS). Similar methods are also explored in work[25].
C. Accelerator Bandwidth Optimization

Since the FCN layer is bandwidth sensitive, we need to be careful
about the accelerator bandwidth optimization. In order to have a sense
of effective FPGA DRAM bandwidths under different memory access
patterns, we test this on the latest Kintex Ultrascale KU060 FPGA
as a representative with Xilinx SDAccel 2015.3 flow. Figure 9 plots
the effective DRAM bandwidth under different memory access burst
lengths and bit-widths. We make two observations in efficient FPAG
DRAM bandwidth utilization. First, the effective FPGA bandwidth

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 5

4

5
20

21

17
16

1
0

0 1 ... 4 5 16 17 ... 20 21

0 16 1 17 4 20 5 21

Data
DRAM Addr. x0 x4 ... x10 x14 x40 x44 ... x50 x54

x0 x4 x8 xc x10 x14 x18 x1c

Data
DRAM Addr.

d) Row-major data layout in DRAM space

e) Proposed data layout in DRAM spaceb) A piece of data tile

(input feature maps)

c) Physical data layout in on-chip buffer per BRAM bank

4 510

1716 20 21

Data tile of input feature map 0

is buffered in BRAM Bank 0

11
10

3
2

7
6

15
14

Input feature map 0

Input feature map 1

5
4 20

21

17

16
1

0

19

18

a) A logical 3D data layout

Data tile of input feature map 1

is buffered in BRAM Bank 1

Data tiling plane

13
12

9
8

Fig. 8: Bandwidth optimization by DRAM layout reorganization

Fig. 9: Effective FPGA DRAM bandwidth under different memory access
burst lengths and bit-widths

(‘Y’ axis) goes up with the increase of burst length (‘X’ axis) and
finally flattens out above some burst length threshold, which is about
128KB on 512-bit bitwidth in our experiment. Limited burst length
will greatly degrade actual bandwidth performance, like 1GB/s on
1KB memory burst access. Second, longer interface bit-width can
achieve higher peak bandwidth. The maximum effective bandwidth
of 10GB/s (about 83% of theoretical 12.8GB/s) can be only reached
at 512 bit-width and above, when the burst length is above 128KB.
Off-chip bandwidth optimization opportunity. As analyzed earlier,
the burst length and bit-width of DRAM interface are two dominating
factors for FPGAs’ effective bandwidth. However, the widely used
data tiling technique usually results in a discontinuous DRAM access
for the row-major data layout in DRAM. We illustrate this using an
example in Figure 8. Figure 8.a) describes four input feature maps in
a logical 3-dimension representation, each with a size of 4×4. Each
dimension is tiled by 2 so that each tile has 2× 2× 2 = 8 elements
in total. The first tile of input feature maps is shown in Figure 8.b).
Figure 8.d) presents its corresponding data layout in DRAM in a
row-major representation, which results in four discontinues blocks.
Therefore, it requires 4 DRAM accesses, each with a burst length
of 2 floating points. This results in a pretty low memory bandwidth
utilization and can greatly degrade the overall performance, especially
for the bandwidth-intensive FCN layers.
On-chip buffer access optimization opportunity. BRAM banks are
usually organized for maximum parallel data access from massive
parallel PEs. As illustrated in Figure 8.c), elements (0, 1, 4, 5) from
input feature map 0 should be put in bank 0, while elements (16, 17,
20, 21) from input feature map 1 should be put in bank 1. However,
such requirements would cause on-chip bank write conflicts using the
original DRAM organization in Figure 8.d). When loading continuous
data blocks (0, 1) from DRAM to BRAM (similar for other pairs),
they will be written to the same bank 0, which causes bank write
conflicts and introduces additional overhead.
Optimization. To improve the effective memory bandwidth, we
reorganize the DRAM layout as illustrated in Figure 8.e). First, we
move the data for an entire tile to a continuous space to improve

the memory burst length and bit-width. Second, we interleave the
data for different BRAM banks to reduce bank read/write conflicts.
Algorithm 9 presents the method for transforming the cube indexes in
Figure8.a) to indexes in linear DRAM space as shown in Figure8.e).
Weight and output tensors use a similar method.

Algorithm 1 DRAM Allocation and Data Organization

Input:
Parameters for feature map tensor shape, [M,R,C]

Parameters for Input BRAM buffer, [Tm, Tr, Tc]
Output:

A linear list of tensor index in DRAM,
List = {ai | i ∈ [0,M ×R× C)}

1: for each [i, j, k] ∈ [M
Tm

, R
Tr

, C
Tc

] do
2: for each [it, jt, kt] ∈ [Tm, Tr, Tc] do
3: T ile Size = Tm × Tr × Tc

4: T ile Addr = (i+ j × M
Tm

+ k × M
Tm
× R

Tr
)× T ile Size

5: Point Addr = it + jt × Tm + kt × Tm × Tr

6: Addr = T ile Addr + Point Addr

7: Append Addr in the mappingList
8: end for
9: end for

IV. UNIFORMED CONV AND FCN REPRESENTATION

A. Prior Representation on CPUs and GPUs

Prior CPU and GPU studies [12, 31] most often used the regular
matrix-multiplication (MM) representation so as to leverage the well-
optimized CPU libraries like Intel MKL and GPU libraries like
cuBLAS. To achieve this uniformed acceleration, they convert a
convolutional MM in the CONV layer to a regular MM in the
FCN layer. However, such a transformation comes at the expense of
data duplication, which diminishes the overall performance gains in
bandwidth-limited FPGA platforms [23]. Figure 11 illustrates the data
duplication overhead by using MM for the CONV layer computation
in AlexNet and VGG16 models. Compared to the original convolu-
tional MM representation, the regular MM representation introduces
7.6x to 25x more data for the input feature maps, and 1.35x to 4.8x
more data for intermediate feature maps and weights, which makes
the CONV layer communication-bound.

B. New Representation Adapted for FPGAs

To avoid the data duplication overhead, we propose to use the
convolutional MM representation, and transform the regular MM
in the FCN layer to the convolutional MM in the CONV layer.
Instead of a straightforward mapping as proposed in [24], we propose
two optimized mappings to improve the data reuse and bandwidth
utilization: input-major mapping and weight-major mapping.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 6

(a) A fully connected layer
(c) Input-major mapping (d) Batched input-major mapping

(Batch size = 3)
(e) Merged input-major mapping

(Ker = 2x1)

(b) A convolution layer
(f) Weight-major mapping (g) Batched weight-major mapping

(Batch size = 2)
(h) Merged weight-major mapping

(Ker = 2x1)

Batch

Merge

Batch

Merge

FC
N	
In
pu

t/
ou

tp
ut

A	
FC
N	
w
ei
gh
t

A	
CO

NV
	fe

at
ur
e	
m
ap

Fig. 10: Input-major and Weight-major mapping from the FCN layer to the CONV layer
TABLE III: Input-major mapping (batch size = 1)

input weight output
Original FCN layer 25088×1 25088×4096 4096×1
HW buffer name input buffer weight buffer output buffer
HW buffer size 32×4096 32×32×3×3 32×4096
Size of data tile 32×1 32×32×1×1 32×1
Burst length 32 1024 32
of memory access 784 100,352 128

TABLE IV: Weight-major mapping (batch size = 1)

input weight output
Original FCN layer 25088×1 25088×4096 4096×1
HW buffer name weight buffer input buffer output buffer
HW buffer size 32×32×3×3 32×4096 32×4096
Size of data tile 32×1×1 32×4096 1×4096
Burst length 32 131072 4096
of memory access 784 784 1

Fig. 11: Data duplication by using regular MM for CONV

1) Straightforward Mapping: For FCN shown in Figure 10(a),
an input vector with size N will do pairwise multiplication with a
weight vector of size N and accumulate the results to get one output
value. There are M weight vectors and M output values. For CONV
shown in Figure 10(b), similarly, N feature maps will convolve with
N weight kernels, and then element-wise addition is done for the
convolution results to get one output feature map. There are M sets
of weight kernels, and we will get M output feature maps.

In a straightforward mapping, each element in an input 1×N vector
of FCN maps to one input feature map sized as Ri=1, Ci=1 of CONV.
And each element in an 1 × N weight vector of FCN maps to one
weight kernel of CONV sized as K1=1, K2=1. This can be viewed
in Figure 10(c) when batch size is 1. Prior work [24] first attempted
to implement both CONV and FCN using a similar mapping, and
demonstrated a performance of nearly 1.2 GOPS, leaving large room
for improvement.

2) Input-Major Mapping: In real-life CNNs, multiple input images
are processed in a batch to improve throughput. Therefore, in our
input-major mapping, we can map a batch of elements from different
input vectors in FCN to the same input feature map (FM) in CONV.
As a result, the data reuse of FCN weight kernels is improved when
convolving the elements from different images in the batched input
FMs. When batch size is batch, there are batch input vectors in
FCN, and the reuse ratio of FCN weight kernels is batch. Note batch
cannot be too large in the real-time inference phase.

To better illustrate the input-major mapping, we use Figure 10(d)
to show how we map FCN to CONV when batch = 3, N = 4 and
M = 2. The four elements of the 1st input vector are mapped to the
1st element of each input FM, and the four elements of the 2nd input
vector are mapped to the 2nd element of each input FM. Both the
weight kernel size and stride size are 1x1. While the weight kernels
slide across the input FMs, they will generate batch elements in each
output FM. In addition to the improved data reuse for weight kernels,
this batching also improves the memory access burst length of FCN
input and output FMs, which improves the bandwidth utilization, as
explained in Section III-C.

Another way to improve the memory burst length is to increase
the weight kernel size ker and batch ker elements within a single
weight (or input) vector in FCN to the same weight kernel (or input
FM) in CONV. Figure 10(e) depicts an example where we change
ker from 1x1 to 1x2. Compared to Figure 10(c), two weights are
grouped in one weight kernel, and two input FMs are grouped into
one input FM. Accordingly, stride size changes with ker to 1x2.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 7

Fig. 12: Input-major mapping Fig. 13: Weight-major mapping

Table V column FCN-Input lists the parameters after input-major
mapping from FCN to CONV. The number of input FMs decreases
to N

ker
, and the number of elements in one input FM increases to

batch× ker. The number of elements in an output FM is batch.
3) Weight-Major Mapping: As another alternative to improve

the data reuse and bandwidth utilization, we propose weight-major
mapping, where input vectors of FCN map to weight kernels of
CONV, and weight vectors of FCN map to input FMs of CONV.
As shown in Figure 10(f), every input vector of FCN in a batch
transforms to one set of weight kernels. Weight vectors of FCN are
aligned in input FMs in a way that weight elements at the same
position of all weight vectors are grouped into the same input FM.
Therefore, each FCN input can be reused Mfcn times (if it can be
buffered on-chip) during the convolution, which greatly improves the
data reuse. In addition, the memory burst length of FCN weights
and FCN output FMs are greatly improved as well. Similarly, the
batch size improves the data reuse of FCN weights and improves the
memory burst length of FCN input FMs in weight-major mapping. In
addition, it decides the number of FCN output FMs that are available
to be processed simultaneously.

Similar to input-major mapping, we can increase the kernel size
ker in FCN input FMs to increase the memory burst length, with an
example of ker = 2 shown in Figure 10(g). Table V column FCN-
Weight lists the parameters for weight-major mapping from FCN to
CONV.

4) Uniformed Representation: Since FCN now maps to CONV,
either using input-major mapping or weight-major mapping, we use
a uniformed representation (column Uniformed) for all cases in Table
V. Considering the complex data reuse and memory burst access
under different batch and kernel sizes, as well as the hardware
resource constraints, it is quite challenging to identify whether input-
major mapping or weight-major mapping is better. Therefore, we
will conduct a quantitative design space exploration of concrete
parameters in Section V.

TABLE V: Uniformed representation parameters for CONV, FCN input-
major mapping and FCN weight-major mapping

Uniformed Conv FCN-Input FCN-Weight
Input FM # N Nconv Nfcn/ker Nfcn/ker

Input FM size Ri · Ci Rin
conv · Cin

conv batch · ker Mfcn · ker
Output FM # M Mconv Mfcn batch
Output FM size Ro · Co Rout

conv · Cout
conv batch Mfcn

Kernel size K1 · K2 K1 · K2 ker ker
Stride S1 · S2 S1 · S2 ker ker

V. DESIGN SPACE EXPLORATION

In this section we discuss how to find the optimal solution of
mapping a CNN/DNN onto our accelerator architecture. In Subsec-
tion V-A, we first use one concrete example to give readers a sense

of the differences of the two mapping methods on their memory
access features; and Subsection V-B gives formal formulations. In
system performance, computation capability and memory access are
two dominating factors to final achievable performance. We propose
to use roofline models to accurately formulate the performance.
In addition, as described in Fig. 9, DRAM’s effective bandwidth
is sensitive to access patterns. We further take DRAM bandwidth
features in our formulations. In Subsection V-B and Subsection V-C,
we present our systematic methods of performance analysis and
design space exploration.

A. A Case Study

We use the real case of a fully connected layer from VGG16
model (FCN 1) in our case study. It has an input vector of 25,088
and an output vector of 4,096. We study the differences of two
mapping methods to an accelerator with a hardware configuration of
< Tm, Tn, Tr × Tc, KernelSize > = < 32, 32, 4096, 3 >.
In order to simplify the explanation, let’s first discuss the mapping
of Fig. 10(c) and of Fig. 10(f) in this subsection. More complicated
situations will be discussed in Section V-B with mathematical for-
mulations.

Figure 12(a) shows the original fully connected layer with “25,088”
inputs, “4,096” outputs and “25, 088 × 4, 096” weights. Accord-
ing to the input-major mapping method described in Section IV,
the corresponding tiling method is 32 × 32, which is shown as
those bold connections in Figure 12(a). Figure 12(b) shows the
input/weight/output accelerator buffers and the tiled FCN layer’s
mapping into corresponding buffers. So the total number of memory
accesses (bursts) to the input vector is (25, 088×1)÷(32×1) = 784;
the total number of memory accesses to the weights is (25, 088 ×
4, 096)÷ (32×32×1×1) = 100, 352; the total number of memory
accesses to the output vector is (4, 096 × 1) ÷ (32 × 1) = 128.
Table III summarizes the total number of memory accesses and the
burst length in each memory access. Similarly, Figure 13 presents
the weight-major mapping, where the tile size for the input buffer
can be much larger (as discussed in Section IV). Table IV shows its
corresponding data.

By comparing Table III and Table IV, we can see that the weight-
major mapping has significantly less numbers of memory accesses
and longer burst lengths than the input-major mapping in this case
study.

B. Analytical Comparison of Two Mapping Methods

In this subsection, we give a formulation of memory access
patterns by considering workload size and platform constraints. We
denote the hardware configuration of our accelerator as “number of
〈input, output, weight〉 buffer = 〈Tn, Tm, Tn × Tm〉” and “size
of each buffer = 〈Tr × Tc, Tr × Tc,K × K〉,” which are exactly
the following notations in Figure 6.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 8

TABLE VI: Number of DRAM accesses

Uniformed Input-major Weight-major

Input
⌈

N
Tn

⌉⌈Ri·Ci
Tr·Tc

⌉ ⌈Nfcn/ker

Tn

⌉ ⌈Nfcn/ker

Tn

⌉
Weight

⌈
N
Tn

⌉⌈
M
Tm

⌉ ⌈Nfcn/ker

Tn

⌉⌈Mfcn
Tm

⌉ ⌈Nfcn/ker

Tn

⌉⌈
batch
Tm

⌉
Output

⌈
M
Tm

⌉⌈Ro·Co
Tr·Tc

⌉ ⌈Mfcn
Tm

⌉⌈
batch
Tr·Tc

⌉ ⌈
batch
Tm

⌉⌈Mfcn
Tr·Tc

⌉
Given the uniformed representation in Table V, the number of

memory accesses can be correspondingly calculated as shown in
Table VI. In this table, M,N,R,C,K are following notations from
Table V’s collumn 2 (uniformed). When considering input-major
mapping’s and weight-mapping’s concrete memory access behavior,
we simply replace uniformed notations with the FCN-input or FCN-
weight in Table V.

The remaining part of Table VI summarizes input-major and
weight-major mapping of memory access. Their major differences
are in their “weight” and “output” DRAM access. For “weight,”
input-major and weight-major mapping methods of DRAM accesses
are

⌈Nfcn/ker

Tn

⌉⌈Mfcn

Tm

⌉
and

⌈Nfcn/ker

Tn

⌉⌈
batch
Tm

⌉
respectively. The

two formulations are almost the same except for “Mfcn” and
“batch.” Real-life network configuration’s “Mfcn” is usually in a
scale of thousands and Tm is in tens (it is constrained by DSP
and BRAM resources, for example “〈Tm, Tn〉 = 〈32, 32〉” uses
1024 multiplication and accumulation operators), while the tunable
parameter “batch” is smaller or equal to Tm. So

⌈Mfcn

Tm

⌉
would be

significantly larger than
⌈
batch
Tm

⌉
. For the output’s DRAM transfer,

the considering denominator is “Tr · Tc” which is for feature maps
and usually very large. At our setting, “Tr ·Tc” is 226×30 = 6780.
With similar deductions,

⌈Mfcn

Tm

⌉⌈
batch
Tr·Tc

⌉
would also be significantly

larger than
⌈
batch
Tm

⌉⌈Mfcn

Tr·Tc

⌉
.

Thus, given an accelerator information 〈Tm, Tn, Tr, T c〉 and
FCN workload configuration 〈Nfcn,Mfcn, ker, batch〉, we are able
to calculate all DRAM traffic following formulations in Table VI.
With the above formulations, we estimate the attainable performance
by jointly considering both computation capability and bandwidth
performance in the next subsection.
C. Revised Roofline Model for Caffeine

1) Original Roofline Model: The roofline model [38] is ini-
tially proposed in multicore systems to provide insight analysis of
attainable performance by relating processors’ peak computation
performance and the off-chip memory traffic. Eq. 2 formulates
the attainable throughput of an application on a specific hardware
platform. Floating-point performance (GFLOPS) is used as the metric
of throughput. The actual floating-point performance of an application
kernel can be no higher than the minimum value of two terms. The
first term describes the peak floating-point throughput provided by all
available computation resources in the system, or computational roof.
Operations per DRAM traffic, or the computation-to-communication
(CTC) ratio, feature the DRAM traffic needed by a kernel in a specific
system implementation. The second term bounds the maximum
floating-point performance that the memory system can support for
a given computation to communication ratio.

AttainablePerf. = min

{
Computational Roof
CTC Ratio×BW (2)

Previous work [13] uses the roofline model to optimize the FPGA
accelerator design. However, the original roofline model used in [13]
ignores the fact that input/output/weight arrays have different data
volumes in each tile. According to Figure 9, different burst lengths
and access patterns will result in different effective bandwidths.
Thus, different designs have different final bandwidth rooflines, which
makes the original roofline-based method’s prediction for bandwidth-
intensive applications extremely inaccurate, like fully connected
layers. As proposed in [13], the original total number of DRAM

access in one layer’s computation is given by the following equation,
where β denotes the corresponding size of input/output/weight data
tile, and α denotes the number of times of corresponding data transfer
for input/output/weight data.

DRAM Access =
∑in,weight,out

i αi × βi (3)

In fact, Equation 3 does not accurately model the total DRAM
traffic. For example, as shown in Figure 9, the effective bandwidth
on 1KB burst DRAM access is only 1GB/s—10x lower than the
maximum effective bandwidth of 10GB/s. Therefore, the original
roofline model becomes extremely inaccurate in bandwidth-sensitive
workloads because it actually takes 10x longer time to make the
data transfer than expected. Therefore, we would like to multiply a
normalization factor of 10x on the original DRAM access number to
approach the accurate effective DRAM traffic.

2) Revised Roofline Model for Caffeine: In general, we propose
to normalize the DRAM traffic of input/output/weight accesses to the
maximum effective bandwidth with a normalization factor γ.

DRAM Access =
∑in,weight,out

i γi × αi × βi (4)

where γ is defined by the equation below. The f function is given
by the curve of effective bandwidth with respect to the burst length,
shown in Figure 9.

γ = max bandwidth/f(β) (5)

Given a specific set of software-definable parameters for one layer
〈N, Ri, Ci, M, Ro, Co, K, S〉 and a specific hardware definable
parameter 〈Ti, To, Tr, Tc〉, as described in Section III-A, we
can determine the ‘X’ and ‘Y’ axis value in the roofline model by
computing its computational performance and CTC ratio.

Similar to [13], the computational performance is given by:

Comput. Perf. =
total computation operations

execution cycles

=
2 ·N ·M ·Ro · Co ·K1 ·K2⌈

N/Ti

⌉
·
⌈
M/To

⌉
·Ro · Co ·K1 ·K2

(6)

Our revised CTC ratio is given by:

CTC ratio =
total computation operations

total DRAM traffic

=
2 ·N ·M ·Ro · Co ·K1 ·K2

γin · αin · βin + γwght · αwght · βwght + γout · αout · βout

(7)

Given above revised roofline mode, we can have a design space
exploration to find the optimal method mapping from the uniformed
representation to our hardware accelerator.

D. Design Space Exploration

Since optimizing the CONV layer with the roofline model has
been extensively discussed in [13], and there is a space constraint,
we mainly focus on optimizing the mapping of the FCN layer
to the uniformed representation using our revised roofline model.
Specifically, it is a problem of choosing input-major/weight-major
mapping methods and the optimal batch and ker parameters, given
the FCN layer configuration and hardware configuration.

We use the VGG16 model’s FCN layer 1 as an example; it has
an input of 25,088 (Nfcn) neurons and output of 4,096 (Mfcn)
neurons, whose notations follow Table V. Batch and ker are tunable
parameters for mapping FCN to the uniformed representation as
described in Section IV. We use the hardware configuration from
the Kintex Ultrascale KU060 platform and set hardware definable
parameters as 〈To, Ti, Tr · Tc, TK1 · TK2〉 = 〈32, 32, 6272, 25〉. We
choose our tile sizes based on the guidance of [13] to maximize the
FPGA resource utilization. Users can configure their own tile sizes.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 9

(a) Design space in CTC ratio (b) Design space in revised roofline model (c) Comparison of original, revised roofline
models and on-board test results

Fig. 14: Design space exploration for FCN input-major mapping under various batch and kernel sizes

(a) Design space in CTC ratio (b) Design space in revised roofline model (c) Comparison of original, revised roofline
models and on-board test results

Fig. 15: Design space exploration for FCN weight-major mapping under various batch and kernel sizes

(a) Input-major (b) Weight-major
Fig. 16: Design space exploration for hidden layers in [39]

(a) Input-major (b) Weight-major
Fig. 17: Design space exploration for bottleneck layers in [40]

1) FCN Input-Major Mapping: Figure 14(a) presents the design
space of FCN input-major mapping in terms of CTC ratio under
various batch (batch) and kernel (ker) sizes. First, given a fixed
ker, the CTC ratio increases with batch, because batch FCN inputs
reuse FCN weights, and memory burst length is increased by batch
which results in higher effective DRAM bandwidth. The CTC ratio
flattens out when batch is bigger than on-chip BRAM size. Second,
given a fixed batch, the CTC ratio increases with ker when batch is
small, because this increases memory burst length and thus benefits
effective DRAM bandwidth. Finally, since the size of input FM is
given by batch · ker in Table V, the maximum batch that could be
cached in on-chip BRAM decreases when ker increases. Therefore,
the CTC ratio decreases when ker increases on a large batch, because
the output FM burst length (given by batch according to Table V)

decreases. In the input-major mapping, the maximum CTC ratio is
achieved with a parameter 〈batch, ker〉 = 〈16384, 1〉.

Figure 14(b) presents input-major mapping’s attainable perfor-
mance using our revised roofline model. Each point represents an
implementation with its computation performance in GOPS and
CTC ratio estimation, which are decided by parameters 〈batch, ker〉
according to our model. The red line (bandwidth roofline, slope
= 10GB/s) represents the max DRAM bandwidth that this FPGA
platform supports. Any point located above this line indicates that
this implementation requires higher bandwidth than what the platform
can provide. Thus, it is bounded by platform bandwidth, and the
attainable performance is then decided by the bandwidth roofline.
From this figure, we can see that all implementations of FCN
with input-major mapping are bounded by bandwidth. The highest
attainable performance is achieved at the highest CTC ratio, where

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 10

〈batch, ker〉 = 〈16384, 1〉, and this batch size is unreasonable in a
real-time inference phase.

Figure 14(c) presents the on-board test performance of input-major
mapping and the comparison between performance estimations from
original and revised roofline models. Our revised roofline model
is much more accurate than the original one, and our estimated
performance is very close to that of the on-board test.

2) FCN Weight-Major Mapping: Figure 15(a) presents the design
space of FCN weight-major mapping in terms of CTC ratio under
various batch (batch) and kernel (ker) sizes. As illustrated in Section
IV-B3, batch represents the number of concurrent PEs processing
different output feature maps in weight-major mapping. Due to the
FPGA resource constraints, we can only put 32 such PEs in the
KU060 FPGA. Therefore, we set an up-limit of 32 to batch in weight-
major mapping, which is pretty small. Given a fixed ker, the CTC
ratio increases with batch since it increases the data reuse of FCN
weights and the memory burst length of FCN inputs. The size of ker
has marginal impact on weight-major mapping because it has pretty
good bandwidth utilization, even for ker = 1.

Figure 15(b) presents weight-major mapping’s attainable perfor-
mance using our revised roofline model. Similar with input-major
mapping, all implementations of weight-major mapping are bounded
by bandwidth. In addition, small batch size also leads to lower
computational performance due to less number of concurrent PEs
in weight-major mapping. The highest attainable performance is
achieved at the highest CTC ratio, where 〈batch, ker〉 = 〈32, 1〉,
which is reasonable in a real-time inference phase.

Figure 14(c) presents the on-board test performance of weight-
major mapping and the comparison between performance estimations
from original and revised roofline models. Different than input-major
mapping, weight-major mapping has very good data reuse as well
as good effective bandwidth, as illustrated in Section IV. So the
proposed roofline model is only slightly better than original model,
and both models are close to the on-board test. In addition, weight-
major mapping presents better performance than input-major mapping
in cases of small batch sizes.

Due to the advantages of weight-major over input-major mapping
in small batch sizes, in the remainder of this paper we will use
weight-major mapping for the FCN layer with the best design point.
E. Design Space Exploration on Speech Applications

Previous sections are based on convolutional neural networks,
which are mainly for computer vision tasks. However, in many
other areas such as speech and auto-encoder, fully connected neural
network is also a major type of workload, such as networks presented
on work [39][40][41][42][43][44].

Figure 16 presents a design space of a hidden layer in work [39],
which has a very typical shape like other FCN workloads.

Figure 17 presents a design space of a bottleneck network, which
is also frequently used in prior work[40][41][42]. Significantly less
number of neurons is bottleneck layer’s major difference to typical
networks. Compared to regular NN layers with 2048 or more neurons,
bottleneck layers usually have much less neurons, such as 20 to
40 neurons in work[40]. This will greatly influences CTC ratios.
As is presented in 17(b), solution ’F4’ has the highest perfor-
mance in weight-major mapping method. On the same configuration
(batch size = 32, kernel size = 16), weight-major mapping
method wins input-major mapping. However, the highest input-major
mapping solution ’F3’ achieves nearly 155 GPOS, which is almost
the double of that of solution ’F4’. Actually, input-major mapping
wins when batch size is larger than 128.

Under real service scenarios, there is a trade-off between low
latency and high-throughput when users use small networks such
as bottleneck NN. When latency is more important, we recommend

weight-major mapping which achieve higher performance on small
batches. Otherwise we recommend, input-major mapping for through-
put. Since the choice depends on real scenarios, we left the adventure
for users.

VI. FROM HIGH-LEVEL NETWORK DESCRIPTION TO

SPECIALIZED CNN ACCELERATOR

Previous sections presented our hardware/software co-designed
approach to accelerate deep learning inference with specialized
hardware. However, programming hardware for non-experts is usually
very difficult. Therefore, we propose an automation flow to apply
our proposed optimizations discussed in those sections to compile
the high-level network descriptions directly into the FPGA-based
specialized hardware accelerator.

As summarized in Figure 18, our automation flow has two co-
operating sides: 1) software automation, which provides a compiler
to map the high-level network definitions to customized instructions
for our specialized hardware; and 2) hardware automation, which is
responsible for generating a new FPGA accelerator bitstream.
A. Software Automation

With the proposed software-definable accelerator design, we imple-
ment an automated flow to bridge the neural network oriented high-
level domain-specific language to our customized accelerator design.
Figure 18 presents the automation flow from Caffe standard inputs;
these are defined in prototxt and caffemodel files in our hardware-
optimized model, which includes all of the accelerator instructions
(network definitions), DRAM space allocations and accelerator-
specific weight data reorganizations. Overall, the key steps of our
automation flow include:
1. Network parser: network model parser and compilation. We

first parse the structure of CNN’s CONV/ReLU/POOL/FCN layers
from Caffe’s network definition file, which is described in prototxt
file, to a structured DAG-based data type to describe CNN’s data
flow. In addition, we read in the original CNN layers’ weights and
biases stored in Caffe’s caffemodel file. This is the only part of
our automation flow that is specific to Caffe; all other parts can
be reused in other frameworks.

2. CNN representation transformation. In the next step we trans-
form FCN in the CNN DAG to a convolution MM format with
roofline-based optimization techniques (as described in Section IV
and Section V). After the transformation, we generate accelerator-
customized instructions to describe the whole CNN for the FPGA
accelerator.

3. Optimizer: weights transformation. In this step we prepare the
CNN layers’ weights and biases and transfer them into a format
which is specifically optimized for our customized accelerator,
as described in Section III-A. This transformation includes static
FPGA DRAM space allocation, weights and biases reorganization,
and floating-point to fixed-point format transformation when the
accelerator is defined as fixed-point by the user.

The above transformed layer definitions and weights and biases
data will be generated for a new CNN once and written into FPGA
DRAM through the PCIe interface. It will be reused for all following
input images, and there will be no further weights or instructions
communication. For each input image, the FPGA accelerator will
start from reading the first CNN layer instructions stored in FPGA
DRAM and stop to reach CPU until the last layer instructions are
finished.
B. Hardware Automation

In the analysis of CNN’s computation model in Section III-A,
we discussed an application-specific hardware design with a series
of computation and memory optimization techniques. Our hardware

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 11

Input ``data``

Input_dim: 3

Input_dim:224

Input_dim: 224

layers {

 bottom ``data``

 top: ``conv1_1``

 name:``conv1_1``

 type:CONV

 convolution_param{

 num_output: 64

 pad: 1

 kernel_size: 3}}

layers {

 bottom ``conv1_1``

 top: ``conv1_1``

 name:``relu1_1``

 type:RELU

 }

layers {

 bottom ``conv1_1``

 top: ``pool1``

 name:``pool1``

 type:POOLING

 pooling_param{

 pool: MAX

 kernel_size: 2

 stride: 2}}

layers {

 bottom ``pool1``

 top: ``conv1_2``

 name:``conv1_2``

 type:CONV

convolution_param{
 num_output: 64
 pad: 1
 kernel_size: 3}}

DRAM Space

Type Input Output Row Col Kernel Stride ReLu POOL …

CONV 3 64 224 224 3 1 1 1 …

CONV 64 64 224 224 3 1 0 0 …

CONV … … … … … … … … …

FCN 25088 32 64 64 1 1 1 0 …

prototxt caffemodel

Network Parser

Software Definable
Parameters

Optimiser

FPGA device

Hardware Definable
Parameters

HLS C++ Code

SDAccel

Customized
Accelerator
Instruction

Reorganized
Weight
Model

FPGA Board

Caffeine SW Library Caffeine HW Library

Bit-stream

PCIe-DRAM

Our Work

Fig. 18: Automation flow from high-level defined networks (Caffe) to hardware optimized accelerator

automation plan is to build an easy-to-use tool with such optimiza-
tions for users to customize the hardware design for their own FPGA
devices.

The key required information is the number of DSP resources,
on-chip storage capacity, and external memory bandwidth provided
by the platform; these are the constraints to the performance of the
accelerators. The output is a set of hardware-definable parameters
which have been depicted in Figure 4. With a highly structured hard-
ware template, we use high-level synthesis to generate the customized
RTL as well as device-specific bitstream with Xilinx’s SDAccel tool.
The optimized microarchitecture proposed in Section III-B ensures its
scalability to larger devices to overcome the difficulties in placement
and routing.

C. Caffe-Caffeine Integration

As a case study, we integrate Caffeine with the industry-standard
Caffe deep learning framework [12]. Note that Caffeine can also be
integrated into other frameworks like Torch [34] and TensorFlow [35].
Figure 19 (left) presents an overview of Caffeine’s HW/SW library
and its integration with Caffe. The integrated system accepts standard
Caffe files for network configuration and weight values. As discussed
earlier, the only part that is Caffe-specific is parsing the network
configurations and loading weights (step 1 and 2) into our Caffeine
software library. Caffeine will take care of the rest.

There are two major execution phases in Caffeine. In phase 1 (steps
3 to 6), it establishes the uniformed representation and automatically
decides the optimal transformation, as illustrated in Section V, and
then reorders weights for bandwidth optimization as illustrated in
Section III-C. Finally, it initializes the FPGA device with weights
and layer configurations. Phase 1 only needs to execute once unless
users want to switch to a new CNN network. In phase 2 (steps 7
to 11), Caffeine conducts the CNN acceleration: in batch mode, it
will accumulate multiple CONV outputs and execute FCN once in
a batch; in single mode, it will execute CONV and FCN once for
each input image. A detailed execution time breakdown of Caffeine
running the VGG16 network on a KU060 platform is shown in the
right-hand part of Figure 19 with a batch size of 32, where CONV
layers dominate the entire execution again.

VII. CAFFEINE RESULTS

A. Experimental Setup

CNN models. To demonstrate the software-definable features of
Caffeine, we use two CNN models—AlexNet [8] and VGG16 [11].
Users only need to write two configuration files for them.
CPU and GPU setup. The baseline CPU we use is a two-socket
server, each with a 6-core Intel CPU (E5-2609 @ 1.9GHz). We

Parse network

configurations

Weight

reorganize

Write layer

configurations to

Device DRAM

Write weights to

Device DRAM

Image

reorganize

Write image to

Device DRAM

*.prototxt *.caffemodel

ImageLoad weights

Wait for

next

image

CONV & POOL & ReLU
Acceleration

Caffeine FPGA

Engine
FCN

Acceleration

Read output from

Device DRAM

Classification result
1 2

4

5 6

7

8

9

Caffeine SW Library

PCIe

Uniformed CNN

representation

transformation

3 11

10

(3) 1.30 ms

(4) 340.20 ms

(5) 7.80 ms

(6) 139.00 ms

(7) 192.00 ms

(8) 27.26 ms

(9) 3190.63 ms

(10) 46.17 ms

(11) 28.70 ms

Batch size = 32

Phase 1:

Phase 2:

Fig. 19: Caffe-Caffeine integration
use a NVIDIA GPU GTX1080 in our experiments. OpenBLAS
and cuDNN 8.0 libraries are used for the CPU and GPU im-
plementations [12]. In the following experiments, cuDNN is set
to CUDNN CONVOLUTION FWD ALGO DIRECT mode, which
the library is optimized on the original 6-loops shown in Figure 3.
FPGA setup. The main FPGA platform we use is the Xilinx KU3
board with a Kintex Ultrascale KU060 (20nm) and a 8GB DDR3
DRAM, where SDAccel 2015.3 is used to synthesize the bitstream.
To demonstrate the portability of our hardware-definable architecture,
we also extend our design to the VC709 (Virtex 690t, 28nm) FPGA
board. We create the IP design with Vivado HLS 2015.2 and use
Vivado 2015.2 for synthesis.
B. Caffeine Results on Multiple FPGAs

To demonstrate the flexibility of Caffeine, we evaluate Caffeine
using 1) two FPGA platforms, KU060 and VC709, 2) three data
types, 32-bit floating-point, 16-bit and 8-bit fixed-point, and 3) two
network models, AlexNet and VGG16, as shown in Figure 20.

First, Figure 20(a) and Figure 20(b) present the VGG16 perfor-
mance for 16-bit fixed-point on VC709 and KU060 platforms, respec-
tively. VC709 can achieve higher peak performance (636 GOPS) and
higher overall performance of all CONV+FCN layers (354 GOPS)
than KU060’s peak 365 GOPS and overall 266 GOPS. Both figures
show that most layers can achieve near-peak performance. Layer
1 is a special case because it only has three input feature maps
(three channels for RBG pictures). For both platforms, the FCN
layer’s performance is quite similar (around 170 GOPS for overall
performance of all FCN layers) because it is mainly bounded by
bandwidth.

Second, Figure 20(b), Figure 20(c), and Figure 20(d) present the
differences between the 16-bit fixed-point, 8-bit fixed-point, and 32-
bit floating-point on KU060. Both CONV and FCN layers show
a drastic increase in performance from 32-bit floating-point to 16-
bit fixed-point. For CONV layers, fixed-point saves computation

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 12

(a) VC709 VGG 16-bit fixed-point (b) KU VGG 16-bit fixed-point (c) KU VGG 8-bit fixed-point

(d) KU VGG 32-bit floating-point (e) KU AlexNet 16-bit fixed-point (f) KU Speech FCN 16-bit fixed-point

Fig. 20: Caffeine results on multiple FPGA boards for different CNN models and data types

Fig. 21: GPU vs. FPGA performance

resources and thus enables more parallelism. For FCN layers, fixed-
point saves bandwidth because of its fewer bits. The KU060 board
with 8-bit operation can achieve as high as 1.46 TOPS peak perfor-
mance for the CONV layer.

Third, Figure 20(b) and Figure 20(e) present the KU060 platform’s
performance on VGG16 and AlexNet. VGG16 has better performance
since it has a more regular network shape which is more suitable for
accelerators (better utilization after tiling).

Fourth, experimental results show that our results are quite near
FPGA’s peak performance. For the KU060 FPGA case in Fig-
ure 20(b), the theoretical peak performance with 1024 DSPs on a 16-
bit fixed-point accelerator is “1, 024×2×0.2GHz = 409.6 GOPS,”
while our attainable end-to-end test is 365 GOPS of peak perfor-
mance. For KU060 FPGA with single-precision float in Figure 20(d),
theoretical peak performance is “100 GFLOPS,” while our evalu-
ation peak performance is 96 GFLOPS.

Fifth, Figure 20(f) shows experimental results on the fully con-
nected network for speech[39]. With our approach, it achieves nearly

150 GOPS performance.

TABLE VII: Comparison with other FPGA work
Zhang[13] Qiu[24] Suda[23] Ours

CNN models AlexNet VGG
Device Virtex Zynq Stratix-V Ultrascale Virtex

480t XC7Z045 GSD8 KU060 690t
Precision float fixed fixed fixed fixed

32 bit 16 bit 16 bit 16 bit 16 bit
DSP # 2240 780 1963 1058 2833
CONV(peak) GOPS 83.8 254.8 - 365 636
CONV(overall) GOPS 61.6 187.8 136.5 310 488
FCN (overall) GOPS - 1.2 - 173 170
CONV+FCN GOPS - 137 117.8 266 354

C. Comparison with Prior FPGA Work
We compare our accelerator design to three state-of-the-art studies

in Table VII. We compare four terms of performance: 1) peak CONV
layer performance, 2) overall performance of all CONV layers, 3)
overall performance of all FCN layers, and 4) overall performance of
all CONV+FCN layers. Our work significantly outperforms all three
prior studies in all terms of performance. Our FCN layer achieves
more than 100x speed-up over previous work. In addition, very-low
bit (binarized) network technique [27] is orthogonal to our work.
D. End-to-End Comparison with CPUs and GPUs

We conduct an end-to-end comparison between Caffe-Caffeine
integration with existing optimized CPU and GPU solutions [12] for
VGG16 in Table VIII. For fair comparison, we use giga operations per
second (GOPS) as the standard metric. With on-board (KU060) test-
ing, our integration using 8-bit fixed-point operations demonstrates an
end-to-end performance of 29x speed-up and 150x energy efficiency
over 12-core CPU, and 5.7x and 2x energy efficiency over batch =
1 and batch = 16 cuDNN implementations respectively. Figure 21
shows detailed layer-wise performance comparison between 8-bit
fixed Ku060 FPGA implementation and GTX1080 GPU cuDNN.
Our FPGA implementation has approximately similar performance
to GPU when batch = 1. But batch = 16 GPU implementation has
much higher performance (lower energy efficiency).

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 13

TABLE VIII: End-to-end comparison with CPU/GPU platforms

Platforms CPU GPU CPU+FPGA
Device E5-2609 GTX1080 KU060 KU060 VX 690t
Precision float float float fix16 fix8 fix16
Technology 22nm 16nm 16nm 20nm 20nm 28nm
Freq.(GHz) 1.9 2.1 2.1 0.2 0.2 0.15
Power(Watt) 150 180 180 25 25 26
Batch Size 1 16 1 1 1 1
Latency/img.(ms) 733.7 8.13 23.5 101.15 25.3 65.13
Speedup 1x 90x 31.2x 7.3x 29x 9.7x
J per image 110 1.46 4.23 2.5 0.73 1.69
Energy Efficiency 1x 75x 26x 43.5x 150x 65x

Finally, Table IX presents the FPGA resource utilization of the
above implementations. SDAccel uses a partial reconfiguration to
write bit-stream, and thus it has an up-limit of 60% of all available
resources. We use about 50% of DSP resources on the KU060 board.
We use 80% of DSP resources on the VC709 board. Note that for
the 8-bit fixed-point implementation, it is more resource efficient and
mainly uses the LUT resources. Caffeine on the KU060 board runs
at a frequency of 200MHz, and on VC709 it runs at a frequency of
150MHz.

TABLE IX: FPGA resource utilization of Caffeine

DSP BRAM LUT FF Freq
VC fix-16 2833(78%) 1248(42%) 3E5(81%) 3E5(36%) 150MHz
KU fix-16 1058 (38%) 782(36%) 1E5(31%) 8E4(11%) 200MHz
KU fix-8 116(4%) 784(36%) 2E5(60%) 1.4E5(20%) 200MHz
KU float 1314(47%) 798(36%) 1.5E5(46%) 2E5(26%) 200MHz

(a) kernel size = 1*1 (b) kernel size = 4*4

Fig. 22: GPU impl. of input- and weight-major mappings

E. Input-major/Weight-major Mapping on GPUs
We further verify our idea on GPU implementations. We took

one optimized implementation on the original 6-loops as shown in
Figure 3 from cuDNN library. We transform the VGG-16 FCN-2
layer to a convolutional layer using both input-major and weight-
major mappings. Figure 22 shows that for most of the cases under
1*1 and 4*4 kernel sizes, weight-major mapping outperforms input-
major mapping.
F. Comparison with TPUs

Google’s Tensor Processing Unit [44] cites work [13] and argues
that their systolic micro-architecture design is more friendly for
frequency tunning. In this work, we also improves and use systolic
design. However, TPU’s performance on MLP for speech are greatly
degraded because of strict bandwidth constraints. Our proposal of
input-major/weight-major mapping in this paper can be helpful for
TPU to optimize the computation and communication ratio and thus
improve overall performance.

VIII. CONCLUSION

In this work we proposed a uniformed convolutional matrix-
multiplication representation to accelerate both the computation-
bound convolutional layers and communication-bound fully con-
nected layers of CNN/DNN on FPGAs. Based on the uniformed

representation, we designed and implemented Caffeine, a HW/SW
co-designed reusable library to efficiently accelerate the entire CN-
N/DNN on FPGAs. Finally, we also provide an automation flow to
integrate Caffeine into the industry-standard software deep learning
framework Caffe. We evaluated Caffeine and its integration with
Caffe using both AlexNet and VGG networks on multiple FPGA
platforms. Caffeine achieved up to 1,460 GOPS on a KU060 board
with 8-bit fixed-point operations, and more than 100x speed-up on
fully connected layers over prior FPGA accelerators. Our Caffe
integration achieved 29x and 150x performance and energy gains
over a 12-core CPU, and 5.7x better energy efficiency over GPU on
a medium-sized KU060 FPGA board.

ACKNOWLEDGMENTS

This work is partially supported by the Center for Domain-
Specific Computing (CDSC) industrial sponsors, including Fujitsu
Labs, Huawei, Intel, Mentor Graphics, and NEC, and the NSF China
under award No.61572045. The authors would also like to thank the
UCLA/PKU Joint Research Institute, Chinese Scholarship Council,
and AsiaInfo Inc. for their support of our research.

REFERENCES

[1] Y. Taigman et al., “Deepface: Closing the gap to human-level
performance in face verification,” in CVPR, 2014, pp. 1701–1708.

[2] K. He et al., “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” arXiv preprint
arXiv:1502.01852, 2015.

[3] R. Girshick et al., “Rich feature hierarchies for accurate object
detection and semantic segmentation,” in CVPR, 2014, pp. 580–
587.

[4] S. Ji et al., “3d convolutional neural networks for human action
recognition,” TPAMI, vol. 35, no. 1, pp. 221–231, 2013.

[5] A. Coates et al., “Deep learning with cots hpc systems,” in ICML,
2013, pp. 1337–1345.

[6] O. Yadan et al., “Multi-gpu training of convnets,” arXiv preprint
arXiv:1312.5853, p. 17, 2013.

[7] K. Yu, “Large-scale deep learning at baidu,” in CIKM. ACM, 2013,
pp. 2211–2212.

[8] A. Krizhevsky et al., “Imagenet classification with deep convolu-
tional neural networks,” in NIPS, 2012, pp. 1097–1105.

[9] M. D. Zeiler et al., “Visualizing and understanding convolutional
networks,” in ECCV 2014. Springer, 2014, pp. 818–833.

[10] C. Szegedy et al., “Going deeper with convolutions,” arXiv preprint
arXiv:1409.4842, 2014.

[11] K. Simonyan et al., “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[12] Y. Q. C. Jia, “An Open Source Convolutional Architecture for Fast
Feature Embedding,” http://caffe.berkeleyvision.org, 2013.

[13] C. Zhang et al., “Optimizing fpga-based accelerator design for deep
convolutional neural networks,” in FPGA. ACM, 2015, pp. 161–
170.

[14] T. Chen et al., “Diannao: A small-footprint high-throughput accel-
erator for ubiquitous machine-learning,” in ACM SIGPLAN Notices,
vol. 49, no. 4. ACM, 2014, pp. 269–284.

[15] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards
uniformed representation and acceleration for deep convolutional
neural networks,” 2016.

[16] C. Farabet et al., “Cnp: An fpga-based processor for convolutional
networks,” in FPL. IEEE, 2009, pp. 32–37.

[17] S. Chakradhar et al., “A dynamically configurable coprocessor
for convolutional neural networks,” in ACM SIGARCH Computer
Architecture News, vol. 38, no. 3. ACM, 2010, pp. 247–257.

[18] D. Aysegul et al., “Accelerating deep neural networks on mobile
processor with embedded programmable logic,” in NIPS. IEEE,
2013.

[19] S. Cadambi et al., “A programmable parallel accelerator for learning
and classification,” in PACT. ACM, 2010, pp. 273–284.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2785257, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, DEC 2016 14

[20] M. Sankaradas et al., “A massively parallel coprocessor for convo-
lutional neural networks,” in ASAP. IEEE, 2009, pp. 53–60.

[21] M. Peemen et al., “Memory-centric accelerator design for convolu-
tional neural networks,” in ICCD. IEEE, 2013, pp. 13–19.

[22] K. Ovtcharov et al., “Accelerating deep convolutional neural net-
works using specialized hardware,” February 2015.

[23] N. Suda et al., “Throughput-optimized opencl-based fpga accelera-
tor for large-scale convolutional neural networks,” in FPGA. ACM,
2016, pp. 16–25.

[24] J. Qiu et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in FPGA. ACM, 2016, pp. 26–
35.

[25] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and
J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on fpgas,” ser. DAC ’17. New York, NY,
USA: ACM, 2017, pp. 29:1–29:6.

[26] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop opera-
tion and dataflow in fpga acceleration of deep convolutional neural
networks,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2017, pp.
45–54.

[27] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional
neural networks with software-programmable fpgas,” ser. FPGA ’17.
New York, NY, USA: ACM, 2017, pp. 15–24.

[28] J. Zhang and J. Li, “Improving the performance of opencl-based
fpga accelerator for convolutional neural network.” in FPGA, 2017,
pp. 25–34.

[29] C. Zhang and V. Prasanna, “Frequency domain acceleration of
convolutional neural networks on cpu-fpga shared memory system,”
in Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM, 2017, pp. 35–44.

[30] Y.-k. Choi et al., “A quantitative analysis on microarchitectures of
modern cpu-fpga platforms,” in DAC 2016, pp. 109:1–109:6.

[31] J. Bergstra et al., “Theano: a cpu and gpu math expression com-
piler,” in SciPy, vol. 4, 2010, p. 3.

[32] V. D. Suite, “Ultrascale architecture fpgas memory interface solu-
tions v7.0,” Technical report, Xilinx, 04 2015, Tech. Rep., 2015.

[33] S. Mittal, “A survey of techniques for managing and leveraging
caches in gpus,” Journal of Circuits, Systems, and Computers,
vol. 23, no. 08, 2014.

[34] “Torch7,” http://torch.ch.
[35] M. Abadi et al., “Tensorflow: Large-scale machine learning on het-

erogeneous distributed systems,” arXiv preprint arXiv:1603.04467,
2016.

[36] K. Rupnow, Y. Liang, Y. Li, D. Min, M. Do, and D. Chen, “High
level synthesis of stereo matching: Productivity, performance, and
software constraints,” in Field-Programmable Technology (FPT),
2011 International Conference on. IEEE, 2011, pp. 1–8.

[37] W. Zuo et al., “Improving high level synthesis optimization oppor-
tunity through polyhedral transformations,” in FPGA. ACM, 2013,
pp. 9–18.

[38] S. Williams et al., “Roofline: an insightful visual performance model
for multicore architectures,” CACM, vol. 52, no. 4, pp. 65–76, 2009.

[39] Z.-J. Yan, Q. Huo, and J. Xu, “A scalable approach to using dnn-
derived features in gmm-hmm based acoustic modeling for lvcsr.”
in Interspeech, 2013, pp. 104–108.

[40] F. Grézl, M. Karafiát, S. Kontár, and J. Cernocky, “Probabilistic and
bottle-neck features for lvcsr of meetings,” in Acoustics, Speech
and Signal Processing, 2007. ICASSP 2007. IEEE International
Conference on, vol. 4. IEEE, 2007, pp. IV–757.

[41] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Extracting deep
bottleneck features using stacked auto-encoders,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on. IEEE, 2013, pp. 3377–3381.

[42] D. Yu and M. L. Seltzer, “Improved bottleneck features using
pretrained deep neural networks,” in Twelfth Annual Conference of
the International Speech Communication Association, 2011.

[43] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[44] N. P. Jouppi, C. Young, N. Patil, and D. e. a. Patterson, “In-
datacenter performance analysis of a tensor processing unit,” in Pro-
ceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017,
pp. 1–12.

Chen Zhang received his B.S. degree in Electronic
Engineering from the University of Electronic and
Science of Technology of China in 2012 and Ph.
D. degree in Computer Science Department from
Peking University in 2017. He is now an associate
researcher (II) at Microsoft Research Asia. His major
research interests are high performance and energy-
efficient computer architectures and systems in deep
learning. He is a member of IEEE and ACM.

Guangyu Sun is an associate professor of Center
for Energy-efficient Computing and Applications
(CECA) at Peking University. He received his B.S.
and M.S degrees from Tsinghua University, Bei-
jing, in 2003 and 2006, respectively. He received
his Ph.D. degree in Computer Science from the
Pennsylvania State University in 2011. His research
interests include computer architecture, electronic
design automation, and acceleration system for mod-
ern applications. He is now serving as an AE of
ACM JETC and TECS. He is a member of IEEE,

ACM, and CCF.

Zhenman Fang recently joined Xilinx after a 3-year
postdoc at UCLA. His research lies at the intersec-
tion of heterogeneous and energy-efficient computer
architectures, big data workloads and systems, and
system-level design automation. He has a PhD in
computer science from Fudan University, China. He
is a member of the ACM and IEEE.

Peipei Zhou received her B.S. degree in Electrical
Engineer from Southeast University, Chien-Shiung
Wu Honor College in 2012, and M.S. degree in Elec-
trical Engineer from the University of California Los
Angeles in 2014. Currently, she is a Ph.D. student
at the UCLA Computer Science Department, under
supervision of Professor Jason Cong. Her research
interests include parallel/distributed architecture and
programming, performance and energy model for
computer architecture design.

Peichen Pan received the Ph.D. degree in computer
science from the University of Illinois at Urbana-
Champaign, Urbana, IL, USA, in 1995. He is Vice
President of Engineering at Falcon Computing So-
lutions Inc. His current research interests include
system-level and high-level synthesis, and FPGA
acceleration of big-data applications such as ma-
chine learning and genomic data processing. Dr. Pan
received David J. Kuck Outstanding Ph.D. Thesis
Award from UIUC in 1996.

Jason Cong received his B.S. degree in computer
science from Peking University in 1985, his M.S.
and Ph. D. degrees in computer science from the
University of Illinois at Urbana-Champaign in 1987
and 1990, respectively. Currently, he is a Chancellors
Professor at the Computer Science Department and
the Electrical Engineering Department, of University
of California, Los Angeles. He was elected to an
IEEE Fellow in 2000 and ACM Fellow in 2008 and
the National Academy of Engineering in 2017.

