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] LLM Scaling Laws Drive Multi-GPU System Scale-Up

" LLM scaling laws incentivize ever-larger models, pushing parameter growth beyond
single-GPU capacity and motivating tightly coupled multi-GPU nodes interconnected
by NVLink/NVSwitch.
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Ghaffar Nia, N., Amiri, A., Luo, Y. et al. Ethical perspectives on deployment of large language model agents in biomedicine: a survey. Al Ethics 2026.



J Tensor Parallelism Contributes to 97% Traffic

" Unlike DP and PP, TP incurs collective communication at every forward and backward
pass, e.g., All-Reduce (basic TP) or Reduce-Scatter / All-Gather (TP+SP), making its
communication overhead the dominant bottleneck as models and GPU counts scale.

Communication Volume and Bandwidth Requirements

Traffic per 4 pounds  Total Traffic (GB)

Parallelism Round (MB)
- % 120 1
DP 1277 32 -
- 6 7680 42
- 180 7680 1350
SP 762 11520 8573

H. Liao, B. Liu, X. Chen, et al., “Ub-mesh: a hierarchically lo- calized nd-fullmesh datacenter network architecture,” HotChips 2025.



]| NVLink SHARP (a.k.a. NVLS)

" Dedicated to NVSwitch-based Multi-GPU Systems
* Introduced since Hopper Architecture

" Native, instruction-level support for in-switch operations

« multimem.* instructions via inline PTX to implement the corresponding collectives

" 2-8x speedups for collectives compared to GPU-driven implementations
Accelerated

GPUO
Cores Collectives

‘1‘1‘1’1‘ ‘1‘“’1‘ multimem.st AllGather

[ NVSwitch with NVLS (NVLink SHARP) ]

‘Lm ‘Lm multimem.|d_reduce Reduce-Scatter

Mem ] [ Mem ] multimem.red AllReduce
GPU3

Instructions

Mem

GPU1 ]

[ GPU2

Klenk B, Jiang N, Thorson G, et al. An in-network architecture for accelerating shared-memory multiprocessor collectives, ISCA 2020.



| CAIS: Computation-aware In-Switch Computing [cruo][crut

NVswitch + NVLS

'GPU2 || GPU 3
Existing NVLS design is Our proposal:
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I AllGather + GEMM Example

" All-Gather is often followed by a GEMM (e.g., attention or FFN), which requires

f :forward

reading data from both local and remote devices.
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] AllGather works in PUSH mode

" Each GPU pushes its local data to other GPUs via the mu/timem.st instruction
 Inline PTX for in-switch computing function
« Automatic Data Duplication/Reduction in the Switch

GPU 0 GPU 1 GPU 2 GPU 3

GPU0 GPU1
i i|_Datad |t i i Cores Mem
i ] i i Data 2 | :
{4 w1 Data3 multimem.st
AO NVLS
Vv
Data O Data O Data O Data O
Data 1 Data 1 Data 1 Data 1
Data 2 Data 2 Data 2 Data 2 Mem Mem
Data 3 Data 3 Data 3 Data 3 GPU2 GPU3
GPUO GPU 1 GPU 2 GPU 3




] Execution Details

All-Gather + GEMM : remote store

GPUO GPU1
Cores Mem
multimem.st J
[ > @ NVLS ]
— 1
\ 4 L 4
Mem Mem
GPU2 GPU3

(@ Producer GPU: proactively
push via multimem.st



] Execution Details

All-Gather + GEMM: = syn.

==

®) Global
Synchronization



] Execution Details

All-Gather + GEMM: = local read
GPUO GPU1
Cores i | K/-Iem Cores | | ﬁem
[ NVLink SHARP ]
Cores | | iﬁem Cores em
GPU2 GPU3

@ Consumer GPU: TBs read local memory
in GEMM Kernel



] In summary: Producer PUSH, then Consumer READ

" The GEMM computation requires memory reads from both local and remote devices,
yet multimem.st, the in-switch instruction used for All-Gather, operates in push mode.

All-Gather + GEMM: remote store = syn. = local read

GPUO GPU1 | Gi:Uo GPU1
Cores Mem : Cores em Cores | | ﬁem
|
multimem. st ¢ !
|
[ > @ NVLS ] ! [ NVLink SHARP ]
#: =
1 |
. 4 . 4 !
Mem Mem I Cores em Cores em
GPU2 GPU3 : GPU2 GPU3
|
(@ Producer GPU: proactively @ Global (@ Consumer GPU: TBs read local memory

push via multimem.st Synchronization in GEMM Kernel
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] From GEMM side: Rethinking All-Gather+ GEMM

" Issue 1: isolated data-transfer & compute in separate phases (GPU 0 vs. 1)
" Issue 2: frequent global synchronization
" Issue 3: more programming effort & software cost

- in-efficiency in fine-grained compute-communicate overlap

GPU 0 GPU 1 __global _ AG_GEMM_MultimemSt(...... ) {
// Perform AllGather with multimem.st

(¢ o AllGather MultimemSt();
SM S SDA: SDA: // Guarantee remote GPU has pushed data to local DRAM
9 Global_Barrier();
// Load data to shared memory from local DRAM
- <

9 Local_Load();
// Guarantee data has been in shared memory
I)I{}\DA: Local Barrier();

41/ // Perform computation with data in shared memory
Computation();}

DRAM

{




I What if AllGather in “Pull Mode” ?

" Benefit 1: data-move & compute unified in one single end
" Benefit 2: less global synchronization
" Benefit 3: less programming effort & software cost

- smoother data-flow & compute-communicate overlap

GPU O GPU 1 __global _ AG_GEMM_Load(...... ) {

// Directly read remote data to shared memory with load
Remote_Load();

// Load data to shared memory from local DRAM

Local Load();

// Guarantee data has been in shared memory

Local Barrier();

// Perform computation with data in shared memory
Computation();

NVLS-enabled NVSwitch
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| Semantic Mismatch between Comp. & Comm.
Existing NVLink SHARP Primitives

Existing Primitives Collective Op | Comm. Mode

multimem.st AllGather Push <€

multimem.ld reduce | Reduce-Scatter Pull <«
multimem.red AllReduce Push < @ “Read-Push”

Tensor Parallelism Requirement @ “Write-Pull”

‘ TP Operation Required Memory Semantics Q "
|/ X ) “Read-Push”

AG-GEMM Read Memory

GEMM-RS Write Memory (.j ‘

TP with SP

AR-GEMM Read Memory
GEMM-AR Write Memory

Basic TP




| CAIS: Re-design NVLS in a Compute-aware Fashion

Our Proposal

Primitives

Comm. Mode

1d.cais

Pull

Push

‘ TP Operation Required Me
AG-GEMM Read Me
TP with SP :
GEMM-RS Write
, AR-GEMM Read®Memory
Basic TP
GEMM-AR Write Memory
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] Three Key Pieces in CAIS

1 2 3

Architecture Kernel-level Graph-level
Foundation Optimization Optimization
ISA Design & ' Cross-GPU ' i Dataflow

. Micro-architectures Coordination Optimization




| Tech 1: ISA Extensions

Original Inst. in The Proposed Inst.
Existing Arch in CAIS
Instruction 1: Joad Id.global.f32 Id.cais.global.f32

________________________________________________________________________________________________________________________________

Instruction 2: reduce red.global.add.f32 red.cais.global.add.f32



| Tech 1: ISA Extensions

® Instruction 1: load

Id.cais.global.f32 d,[a];

/KO

CAIS Flag State Data Data Reg Addr. Reg
Space type

¥ Instruction 2: reduce

red.cais.global.add.f32 [a],d;

P TR

CAIS Flag State Reduce Data Addr. Reg Data Reg
Space Operation Type



| Tech 1: Micro-architectures

Port

_. | Routing | _ <
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i : R
| i | L | H Merge Unit
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r r N
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Is\Load F dout H Pkt Data
N
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| Tech 1: In-Switch Micro-Functions

[ Packet Arrive

Load-Wait a

Load{Ready

1. Send Response
2. Increment Count

< count? >

nGPU-1

4 N
Release Entry

\, J

r1. Store Request
L2. Increment CounE

Access Type?

Load

Response
Packet Type?

Request

Check CAM
Lookup Table

@

Miss

1 Forward to GPU
2 Allocate Entry

1. Status = Load-Ready
2. Send Resp. for Stored Req.
3. Store Data

Micro-Function 1:
Load Request Merging

Reduction

Packet Type?

Request

Check CAM
Lookup Table

1. Compute Sum
2. Increment

Miss Count

[Allocate Entry ] @

nGPU-1
1. Release Entry
2. Send out Sum
Micro-Function 2:
Reduction Request Merging




] Tech 2: Cross-GPU TB Coordination

" AliGather-GEMM Example:

o o e e e e e e e e e e e e e e Ee e e e e Em e R e e e mm e mm e e e Ee M Em e e e e e Em e e e mm Em mm e e e e e e e e e e e e e e e e m e e e e e e e e e e
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GPUI

GPU2
GPU3

GPUO GPUI1 GPU2 GPU3

P e I\ A4
e A0
= Al y
I AD XBOB1B2B3|=|CO/C1|C2/C3
«—] A3
Mat A Mat B Mat C

AllGather-GEMM
Example

Gpuo | GPUI GPU2 GPU3
sMm TBO! || sm ITB1l || sm ITB2 | | sm ITB3
A
Switch !
A0 AlH A2 A3
pRaM ||| pRAaM |||l bRAM || || DRAM

In-switch Request

Broadcasting




] Tech 2: Cross-GPU TB Coordination

" Without coordination, mergeable load or reduction requests from different
GPUs may arrive at the switch at different times, resulting in missed merging

opportunities or buffer pressure due to delayed aggregation.

GPU 0] (Switch ] (GPU 2

-

Timeline without Timeline with
Coordination Coordination

Sync

! (Pre-launch)

Sync

1 (Pre-access)




] Tech 2: Cross-GPU TB Coordination

SASS [&
CUDA Compilation JIT Compilation Code 7
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| Tech 3: Graph-level dataflow optimization

e a
Output Projection Layer First Layer
of Attention of FFN
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Sub-layer of Transformer layer and its fine-grained dependency



I Tech 3: CAIS-enabled Kernel Fusion

Global Barrier
SM1 | Reduce-Scatter AllGgther -
GPU2Switch | : ¥ time
Switch2GPU :
Timeline of communication-centric in-switch computing
Start before completion of producer kernel
SMO ]
SM1 I >
GPU2Switch — N — time
Switch2GPU S

_________________________________________________________________________________________________________________________________



| Tech 3: Opportunities of Complementary Traffic

GPU 0 [ GPU 1
A A

GPU 1

from gp togpu‘ ‘togpu from gp to gpu | pigeei¥yall

TOom gp ‘togpu‘ ‘togpu 0m gp
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GPU 2 GPU 3
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| Tech 3: Kernel Fusion for Complementary Traffic

SMO ||
SM1
L e e e o +
GPU2SwitcH | | —9® — time
Switch2GPU_—— I

-----------------------------------------------------------------------------------------------------------------------------------

___________________________________________________________________________________________________________________________________

Utilize complementary Communication pattern

SMO Il

SM1 Il | >
GPU2Switch | .|: : ] time
Switch2GPU 7 |

Timeline of compute-aware in-switch computing + fine-grained
dependency + asymmetric kernel overlapping
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| Experimental Methodology

" Machine Setup:
« 8 GPUs + 4 NVSwitches, similar to NVDIA DGX-H100
« Modified Accel-Sim + BookSim2
" Workload:
« Mega-GPT-4B, Mega-GPT-8B, LLaMA-7B
» Training and Inference

" Previous work:

Baseline MICRO’20 ASPLOS’22 SC’24 ASPLOS’24

Original - LADM CoCoNet FuseLib T3

+NVLS TP/SP+NVLS - CoCoNet+NVLS  FuseLib+NVLS T3+NVLS




] Result 1: Model Speedup (Training/Inference)

" Inference: 1.21x~ 1.99x

" Training: 1.25x~2.03 x

7)) TP-NVLS msm SP-NVLS CoCoNet FuseLib T3 CoCoNet-NVLS FuseLib-NVLS msm T3-NVLS LADM E¥1 CAIS-Base [ZZ] CAIS
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2 0.0 , d T T A4 T l T
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. Y
v M1 1 u
‘% 0.0 -~ T T T T + T T T T t T T T
L1 L2 L3 L4 : L1 L2 L3 L4 : L1 L2 L3 L4
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| Result 2: Benefits of TB Coordination

" Higher Performance:
« The waiting time was reduced
from 35 to 3 microseconds for
merge requests.

" Lower Hardware Cost:

» This further decreases the
required capacity of the lookup
table, leading to higher
performance with fewer in-switch
caches.

Min Required Table (KB)

Normalized Perf.

CAIS-w/o-Coord CAIS

250 i T
1 - 1
1 1 !
200 - =] | ! el s .
_ — 1 I _ + Pre-launch Sync |
P 1 1 b e cmomemoe = ;
150 - : I
- : i+ Pre-access Sync
100 - - - :I 1
50 i i !
i 1 1 i+ Request Throttling
I I i
o LALALALA ALALAL A AL AL AL e
L1 L2 L3 L4jL1l L2 L3 L4}Ll L2 L3 L4 T T T
Mega-GPT-4B ! Mega-GPT-8B ! LLaMA-7B 0 10 20 30 (us)
. . (b) Waiting Time
(a) Required Merge Table Size (Reflect Temporal Locality)
== CAIS-w/o-Coord. —@— CAIS
1.0 - & @ -0 9
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0.4 - ——— e = = = =T
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Port Buffer Size (KB)



] Result 3: Bandwidth Utilization Improvements
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] Result 4: Scalability and HW Cost

" Scalability: ~#~ CoCoNet-NVLS —8— CAIS

» The performance with 32 GPUs is less than 1.1 |

5% lower than with 8 GPUs. 7y \\\.
« The hardware overhead does not increase “f__
with the number of GPUs E.’ - -~
Eo.s— A e,
" HW Cost: 0.7 -
« Switch: 0.5 mm2, < 1% of NVswitch. a 8 16 32

« GPU: 0.019 mm2, <0.01% of H100.

« 12 nm process
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| Takeaways & Open questions

" The existing NVSwitch is designed with a communication-centric approach,
lacking consideration for up/down-stream operators (e.g., GEMM),
limiting the performance of in-switch computing in Scale-up GPU System.

" This work provides a detailed analysis of the TP dataflow during both LLM
training and inference, and subsequently redesigns a Compute-aware In-
switch Computing communication mechanism.

® Building upon this mechanism, we propose corresponding designs at the
instruction set, architecture, and software stacks. These designs
substantially enhance the collective performance of multi-GPU systems,
thereby demonstrating the advantages of the proposed scheme.
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