
Towards Compute-Aware In-Switch Computing for
LLMs Tensor-Parallelism on Multi-GPU Systems

Chen Zhang1, Qijun Zhang1*, Zhuoshan Zhou1, Yijia Diao1,
Haibo Wang2, Zhe Zhou2, Zhipeng Tu2, Zhiyao Li2,

Guangyu Sun3, Zhuoran Song1, Zhigang Ji1, Jingwen Leng1*, Minyi Guo

1Shanghai Jiao Tong University, 2Huawei Technologies Co. Ltd., 3Peking University

Pre
vie

w1. Background
2. Motivation
3. Solutions
4. Experiments
5. Conclusion

Pre
vie

w

3

§ LLM scaling laws incentivize ever-larger models, pushing parameter growth beyond
single-GPU capacity and motivating tightly coupled multi-GPU nodes interconnected
by NVLink/NVSwitch.

3LLM Scaling Laws Drive Multi-GPU System Scale-Up

Ghaffar Nia, N., Amiri, A., Luo, Y. et al. Ethical perspectives on deployment of large language model agents in biomedicine: a survey. AI Ethics 2026.

2017 2024-252018-19 2020 2021 2022 2023

Year / Development Phase

M
od

el
 S

ca
le

 a
nd

 C
ap

ac
ity

Transformer

BERT and
GPT-2

GPT-3

PaLM and
Scaling

Law

MoE and
Sparse

Routing

LLaMA
and Open-
weight era

GPT-4
and

GLAM

Unsupervised
pre-training

Transfer
learning

and
fine-tuning

Cloud
computing

and large-scale
GPUs

Scaling laws
and

data-efficient
optimization

Mixture-of-
Experts
(MoE)
scaling

Open-weight
and domain-

specific
models

Multimodal
and retrieval
augmented
generation

1.8 TB/s

Pre
vie

w

4

§ Unlike DP and PP, TP incurs collective communication at every forward and backward
pass, e.g., All-Reduce (basic TP) or Reduce-Scatter / All-Gather (TP+SP), making its
communication overhead the dominant bottleneck as models and GPU counts scale.

4Tensor Parallelism Contributes to 97% Traffic

PP
DP
EP

TP
SP

Communication Volume and Bandwidth Requirements

Traffic per
Round (MB)

Rounds Total Traffic (GB)

96
1277

6
180

762

120

32
7680
7680

11520

11
40
42

1350
8573

Parallelism

97%

H. Liao, B. Liu, X. Chen, et al., “Ub-mesh: a hierarchically lo- calized nd-fullmesh datacenter network architecture,” HotChips 2025.

Pre
vie

w

5

§Dedicated to NVSwitch-based Multi-GPU Systems
• Introduced since Hopper Architecture

§Native, instruction-level support for in-switch operations
• multimem.* instructions via inline PTX to implement the corresponding collectives

§ 2–8× speedups for collectives compared to GPU-driven implementations

5NVLink SHARP (a.k.a. NVLS)

multimem.st

multimem.ld_reduce

multimem.red

Instructions Accelerated
Collectives

AllGather

Reduce-Scatter

AllReduce
GPU3

Cores Mem
GPU2

Cores Mem

GPU1

Cores Mem

GPU0

Cores Mem

NVSwitch with NVLS (NVLink SHARP)

Klenk B, Jiang N, Thorson G, et al. An in-network architecture for accelerating shared-memory multiprocessor collectives, ISCA 2020.

Pre
vie

w

6

6CAIS: Computation-aware In-Switch Computing

GPU 3GPU 2

GPU 1GPU 0

NVswitch + NVLS

Instructions Accelerated
Collectives

multimem.st

multimem.ld_reduce

multimem.red

AllGather

Reduce-Scatter

AllReduce

Existing NVLS design is
Communication Centric

Tenor Parallel Operations
AllGather + GEMM

GEMM + ReduceScatter
AllReduce + GEMM
GEMM + AllReduce

TP with SP

Basic TP

Our proposal:
Computation Aware

1. Background
2. Motivation
3. Solutions
4. Experiments
5. Conclusion

Pre
vie

w

8

§ All-Gather is often followed by a GEMM (e.g., attention or FFN), which requires
reading data from both local and remote devices.

8AllGather + GEMM Example

TP

Layer
O

utput

D
ropout

G
eLU

D
ropout

Linear

L
inear

LayerN
orm

Linear

A
ttention

Layer
Input

LayerN
orm

TP

AG-GEMMAG-GEMM

SPSPSP

R
S

R
S

A0

A3

A1
A2

B0 C0

A0

A1

A2

A3

All-Gather
(multimem.st)

GPU 0
GPU 0

GPU 1
GPU 2

GPU 3

𝑓

f

:forward

:backward

f 𝑓

Pre
vie

w

9

§ Each GPU pushes its local data to other GPUs via the multimem.st instruction
• Inline PTX for in-switch computing function
• Automatic Data Duplication/Reduction in the Switch

9AllGather works in PUSH mode

Data 0
Data 1

Data 2
Data 3

Data 0

GPU 0 GPU 1 GPU 2 GPU 3

GPU 0 GPU 1 GPU 2 GPU 3

Data 1
Data 2
Data 3

Data 0
Data 1
Data 2
Data 3

Data 0
Data 1
Data 2
Data 3

Data 0
Data 1
Data 2
Data 3 GPU3

Cores Mem
GPU2

Cores Mem

GPU1

Cores Mem

GPU0

Cores Mem

NVLS

multimem.st

A0

A0A0A0

Pre
vie

w

11

11Execution Details

① Producer GPU: proactively
push via multimem.st

③ Consumer GPU: TBs read local memory
in GEMM Kernel

GPU3
Cores Mem

GPU2
Cores Mem

GPU1

Cores Mem
GPU0

Cores Mem

NVLink SHARP

All-Gather + GEMM: remote store à syn. à local read

② Global
Synchronization

GPU3
Cores Mem

GPU2
Cores Mem

GPU1
Cores Mem

GPU0
Cores Mem

NVLS

multimem.st

Pre
vie

w

12

12Execution Details

① Producer GPU: proactively
push via multimem.st

③ Consumer GPU: TBs read local memory
in GEMM Kernel

GPU3
Cores Mem

GPU2
Cores Mem

GPU1

Cores Mem
GPU0

Cores Mem

NVLink SHARP

All-Gather + GEMM: remote store à syn. à local read

② Global
Synchronization

GPU3
Cores Mem

GPU2
Cores Mem

GPU1
Cores Mem

GPU0
Cores Mem

NVLS

multimem.st

Pre
vie

w

13

13Execution Details

① Producer GPU: proactively
push via multimem.st

③ Consumer GPU: TBs read local memory
in GEMM Kernel

GPU3
Cores Mem

GPU2
Cores Mem

GPU1

Cores Mem
GPU0

Cores Mem

NVLink SHARP

All-Gather + GEMM: remote store à syn. à local read

② Global
Synchronization

GPU3
Cores Mem

GPU2
Cores Mem

GPU1
Cores Mem

GPU0
Cores Mem

NVLS

multimem.st

Pre
vie

w

14

§ The GEMM computation requires memory reads from both local and remote devices,
yet multimem.st, the in-switch instruction used for All-Gather, operates in push mode.

14In summary: Producer PUSH, then Consumer READ

① Producer GPU: proactively
push via multimem.st

③ Consumer GPU: TBs read local memory
in GEMM Kernel

GPU3
Cores Mem

GPU2
Cores Mem

GPU1

Cores Mem
GPU0

Cores Mem

NVLink SHARP

All-Gather + GEMM: remote store à syn. à local read

② Global
Synchronization

GPU3
Cores Mem

GPU2
Cores Mem

GPU1
Cores Mem

GPU0
Cores Mem

NVLS

multimem.st

Pre
vie

w

15

A0

A3

A1
A2

B0 C0

15From GEMM side: Rethinking All-Gather+GEMM

TP

Layer
O

utput

D
ropout

G
eLU

D
ropout

Linear

L
inear

LayerN
orm

Linear

A
ttention

Layer
Input

LayerN
orm

TP

AG-GEMMAG-GEMM

SPSPSP

R
S

R
S

A0 Local Read

A1

A2

A3

Remote Read

All-Gather
works with store

GPU 0Remote Read

Remote Read

GPU 0
GPU 1

GPU 2
GPU 3

GEMM works with read

mismatch

f 𝑓

Pre
vie

w

16

16From GEMM side: Rethinking All-Gather+GEMM

GPU 0

SM SM

DRAM

SM SM

DRAM

GPU 1

3
1

__global__ AG_GEMM_MultimemSt(......) {
// Perform AllGather with multimem.st
AllGather_MultimemSt();
// Guarantee remote GPU has pushed data to local DRAM
Global_Barrier();
// Load data to shared memory from local DRAM
Local_Load();
// Guarantee data has been in shared memory
Local_Barrier();
// Perform computation with data in shared memory
Computation();}

1

2

3

2

§ Issue 1: isolated data-transfer & compute in separate phases (GPU 0 vs. 1)

§ Issue 2: frequent global synchronization

§ Issue 3: more programming effort & software cost

à in-efficiency in fine-grained compute-communicate overlap

Pre
vie

w

17

§Benefit 1: disjoint data-move & compute unified in one single end
§Benefit 2: frequent less global synchronization
§Benefit 3: more less programming effort & software cost

à smoother data-flow & compute-communicate overlap

17What if AllGather in “Pull Mode”?

__global__ AG_GEMM_Load(......) {
// Directly read remote data to shared memory with load
Remote_Load();
// Load data to shared memory from local DRAM
Local_Load();
// Guarantee data has been in shared memory
Local_Barrier();
// Perform computation with data in shared memory
Computation();

}

GPU 0

SM SM

DRAM

SM SM

DRAM

GPU 1

1

1
2

2

NVLS-enabled NVSwitch

Pre
vie

w

19

19(TP | SP) & (Forward | Backward)

Tensor Parallelism with Sequence Parallelism (TP with SP)

Basic Tensor Parallelism (Basic TP)

𝑓

f

:forward

:backward

Pre
vie

w

20

20Semantic Mismatch between Comp. & Comm.

TP Operation
AG-GEMM Read Memory
GEMM-RS Write Memory
AR-GEMM Read Memory
GEMM-AR Write Memory

TP with SP

Basic TP

Required Memory Semantics

Tensor Parallelism Requirement

multimem.st

multimem.ld_reduce

multimem.red

Existing Primitives Collective Op

AllGather

Reduce-Scatter

AllReduce

Push

Pull

Push

Comm. Mode

Existing NVLink SHARP Primitives

“Read-Push”

“Write-Pull”

Mis-Matches

“Read-Push”

Pre
vie

w

21

21CAIS: Re-design NVLS in a Compute-aware Fashion

TP Operation
AG-GEMM Read Memory
GEMM-RS Write Memory
AR-GEMM Read Memory
GEMM-AR Write Memory

TP with SP

Basic TP

Required Memory Semantics

Tensor Parallelism Requirement

multimem.st

multimem.ld_reduce

multimem.red

Existing Primitives Collective Op

AllGather

Reduce-Scatter

AllReduce

Push

Pull

Push

Comm. Mode

Existing NVLink SHARP Primitives Our Proposal

ld.cais

red.cais

Primitives

Pull

Push

Comm. Mode

Match!

Pre
vie

w1. Background
2. Motivation
3. Solutions
4. Experiments
5. Conclusion

Pre
vie

w

24

24Three Key Pieces in CAIS

ISA Design &
Micro-architectures

Architecture
Foundation

1

Cross-GPU
Coordination

Kernel-level
Optimization

2

Dataflow
Optimization

Graph-level
Optimization

3

Pre
vie

w

25

25Tech 1：ISA Extensions

Instruction 1: load ld.cais.global.f32

red.cais.global.add.f32

ld.global.f32

red.global.add.f32

Original Inst. in
Existing Arch

Instruction 2: reduce

The Proposed Inst.
in CAIS

Pre
vie

w

26

26Tech 1：ISA Extensions

§ Instruction 1: load

§ Instruction 2: reduce

ld.cais.global.f32 d,[a];

Data
type

Addr. RegData RegCAIS Flag State
Space

red.cais.global.add.f32 [a],d;

Data
Type

Addr. Reg Data RegCAIS Flag State
Space

Reduce
Operation

Pre
vie

w

27

Switch

GPU 1

GPU 3

GPU 0

GPU 2

Port 0 Port 1

Port 2 Port 3
Crossbar

Arbiter

Routing
Table

27Tech 1: Micro-architectures

§CAM Lookup Table
ØMatching CAIS requests

§Merge Table
ØMaintain Partial Results TX

RXIngress

Egress

Route

CAIS Flag

CAM
Lookup
Table

Addr

Is Load

query
content

hit

ptr

Merging
Table

Valid Load
……

Ctrl Unit

CAIS Flag

Is Resp

Req

missTo Merge Unit

Merge Unit

ctrl din
dout

Vec. ALU

From
Merge Unit

Resp

To Merge Unit

From
Ingress

Content

Cnt

To Route

Pkt Data

Port

4

ctrl

2

3

3

4

3

5

25 5

1

2

Addr
……

Status

Reduction

Load-Wait
Load-Ready

Count Content Array

Data (128B)

Req0 Info
Data (128B)

… …

4

Pre
vie

w

28

28Tech 1: In-Switch Micro-Functions

Packet Arrive Access Type?

Packet Type?

1. Status = Load-Ready
2. Send Resp. for Stored Req.
3. Store Data

1. Forward to GPU
2. Allocate Entry

1. Send Response
2. Increment Count

Count?

Status?

Micro-Function 1:
Load Request Merging

Micro-Function 2:
Reduction Request Merging

ReductionLoad

Request

ResponseLoad-Wait

Load-Ready

Result?
Hit

MissnGPU-1

Release Entry

1. Store Request
2. Increment Count

Check CAM
Lookup Table

Packet Type?

Request
Check CAM

Lookup Table

Allocate Entry

Result?

Miss

1. Compute Sum
2. Increment
Count

Count?

nGPU-1
1. Release Entry
2. Send out Sum

1

2

4

3
4

5

Pre
vie

w

29

29Tech 2: Cross-GPU TB Coordination

§AllGather-GEMM Example:

C0C1C2C3× =

Mat A Mat CMat B

GPU0 GPU1 GPU2 GPU3

A0
DRAM

A1
DRAM

A2
DRAM

Switch

TB0SM
GPU0

TB1SM
GPU1

TB2SM
GPU2

A0

A2
A3

A1 B0B1B2B3

AllGather-GEMM
Example

In-switch Request
Broadcasting

GPU0
GPU1
GPU2
GPU3 A3

DRAM

TB3SM
GPU3

“A1”data is requested by multiple GPUs (0/2/3)

Pre
vie

w

30

30Tech 2: Cross-GPU TB Coordination

§Without coordination, mergeable load or reduction requests from different
GPUs may arrive at the switch at different times, resulting in missed merging
opportunities or buffer pressure due to delayed aggregation.

tim
e

tim
e

Request
Long

Request

GPU 2SwitchGPU 0

TB
 2

Request Request

GPU 2SwitchGPU 0

TB
 2

Sync
(Pre-launch)

Waiting

Merge?
Merge!

Timeline without
Coordination

Timeline with
Coordination

TB
 0

TB
 0

Sync
(Pre-access)

Pre
vie

w

31

31Tech 2: Cross-GPU TB Coordination
CUDA
Code

CUDA Compilation
Mergeable

Request Analysis

Mergeable? Yes
Asm(“red [Addr], psum”)
Addr = f(BlockIdx.x, BlockIdx.y)

PTX
Code

JIT Compilation
CAIS

Insertion
TB Group
Formation

Group IDBlockIdx
00, 0
00, 0

Compiler

SASS
Code

Architecture

CAIS Insertion
before Generating SASS

TB Group Formation
in Kernel Info

Mergeable Req. Analysis
for CUDA Code

Grouping? BlockIdx.x and y

Port Crossbar
Routing Table

Group Sync Table
Switch

CountGroup ID
……

GPU Group Sync Table

HubDRAM

NoC

SM
Warp
Sche. Sync

TB Sche.
Synchronizer

StatusGroup ID
……

MetaData
…

SwitchWarp/TB Sche.

syncnotify req resp

red.global.add.f32

red.cais.global.add.f32

GPU ID
0
1

Kernel
Info

Group-Aware
Synchronization
Mechanisms

Compiler-Guided
TB Grouping

Pre
vie

w

32

32Tech 3: Graph-level dataflow optimization

First Layer
of FFN

Output Projection Layer
of Attention

Mat A
GEMM-1

LN Mat B
GEMM-2

Sub-layer of Transformer layer and its fine-grained dependency

Pre
vie

w

33

33Tech 3: CAIS-enabled Kernel Fusion

time

SM0
SM1

GPU2Switch
Switch2GPU

Reduce-Scatter AllGather

Global Barrier

time

SM0
SM1

GPU2Switch
Switch2GPU

Start before completion of producer kernel

Timeline of communication-centric in-switch computing

Timeline of compute-aware in-switch computing + fine-grained dependency

Pre
vie

w

34

34Tech 3: Opportunities of Complementary Traffic

Reduction in GEMM-RS Load in AG-GEMM

Pre
vie

w

35

35Tech 3: Kernel Fusion for Complementary Traffic

SM0
SM1

GPU2Switch
Switch2GPU

time

time

SM0
SM1

GPU2Switch
Switch2GPU

Utilize complementary Communication pattern

Timeline of compute-aware in-switch computing + fine-grained dependency

Timeline of compute-aware in-switch computing + fine-grained
dependency + asymmetric kernel overlapping

Pre
vie

w1. Background
2. Motivation
3. Solutions
4. Experiments
5. Conclusion

Pre
vie

w

37

37Experimental Methodology

§Machine Setup：

• 8 GPUs + 4 NVSwitches, similar to NVDIA DGX-H100

• Modified Accel-Sim + BookSim2

§Workload：

• Mega-GPT-4B，Mega-GPT-8B，LLaMA-7B

• Training and Inference

§ Previous work:

Baseline MICRO’20 ASPLOS’22 SC’24 ASPLOS’24

Original - LADM CoCoNet FuseLib T3

+NVLS TP/SP+NVLS - CoCoNet+NVLS FuseLib+NVLS T3+NVLS

Pre
vie

w

38

38Result 1: Model Speedup (Training/Inference)

§ Inference: 1.21×~ 1.99×

§ Training: 1.25×~2.03×

End-to-End

Layer
wise

Pre
vie

w

39

39Result 2：Benefits of TB Coordination

§Higher Performance:
• The waiting time was reduced

from 35 to 3 microseconds for

merge requests.

§ Lower Hardware Cost:
• This further decreases the

required capacity of the lookup

table, leading to higher

performance with fewer in-switch

caches.

Pre
vie

w

40

40Result 3: Bandwidth Utilization Improvements

CAIS base: 62.4%
Only ISA & Arch

CAIS Partial: 84.7%
ISA & Arch + Graph

CAIS Full: 90.2%
ISA & Arch + Graph + Trfc Ctl

Pre
vie

w

41

41Result 4：Scalability and HW Cost

§ Scalability：

• The performance with 32 GPUs is less than

5% lower than with 8 GPUs.

• The hardware overhead does not increase

with the number of GPUs

§HW Cost：
• Switch: 0.5 mm2, < 1% of NVswitch.

• GPU: 0.019 mm2, <0.01% of H100.

• 12 nm process

Pre
vie

w1. Background
2. Motivation
3. Solutions
4. Experiments
5. Conclusion

Pre
vie

w

43

43Takeaways & Open questions

§The existing NVSwitch is designed with a communication-centric approach,
lacking consideration for up/down-stream operators (e.g., GEMM),
limiting the performance of in-switch computing in Scale-up GPU System.

§This work provides a detailed analysis of the TP dataflow during both LLM
training and inference, and subsequently redesigns a Compute-aware In-
switch Computing communication mechanism.

§Building upon this mechanism, we propose corresponding designs at the
instruction set, architecture, and software stacks. These designs
substantially enhance the collective performance of multi-GPU systems,
thereby demonstrating the advantages of the proposed scheme.

Thank You !
Chen Zhang

Assistant Professor

Shanghai Jiao Tong University

chenzhang.sjtu@sjtu.edu.cn

