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§ LLM scaling laws incentivize ever-larger models, pushing parameter growth beyond 
single-GPU capacity and motivating tightly coupled multi-GPU nodes interconnected 
by NVLink/NVSwitch.

3LLM Scaling Laws Drive Multi-GPU System Scale-Up

Ghaffar Nia, N., Amiri, A., Luo, Y. et al. Ethical perspectives on deployment of large language model agents in biomedicine: a survey. AI Ethics 2026. 
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§ Unlike DP and PP, TP incurs collective communication at every forward and backward 
pass, e.g., All-Reduce (basic TP) or Reduce-Scatter / All-Gather (TP+SP), making its 
communication overhead the dominant bottleneck as models and GPU counts scale.

4Tensor Parallelism Contributes to 97% Traffic
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H. Liao, B. Liu, X. Chen, et al., “Ub-mesh: a hierarchically lo- calized nd-fullmesh datacenter network architecture,” HotChips 2025. 
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§Dedicated to NVSwitch-based Multi-GPU Systems
• Introduced since Hopper Architecture

§Native, instruction-level support for in-switch operations
• multimem.* instructions via inline PTX to implement the corresponding collectives

§ 2–8× speedups for collectives compared to GPU-driven implementations 

5NVLink SHARP (a.k.a. NVLS)

multimem.st

multimem.ld_reduce

multimem.red
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NVSwitch with NVLS (NVLink SHARP)

Klenk B, Jiang N, Thorson G, et al. An in-network architecture for accelerating shared-memory multiprocessor collectives, ISCA 2020. 
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6CAIS: Computation-aware In-Switch Computing

GPU 3GPU 2

GPU 1GPU 0

NVswitch + NVLS

Instructions Accelerated 
Collectives

multimem.st

multimem.ld_reduce

multimem.red

AllGather

Reduce-Scatter

AllReduce

Existing NVLS design is
Communication Centric

Tenor Parallel Operations
AllGather + GEMM

GEMM + ReduceScatter
AllReduce + GEMM
GEMM + AllReduce

TP with SP

Basic TP

Our proposal: 
Computation Aware



1. Background
2. Motivation
3. Solutions
4. Experiments
5. Conclusion



Pre
vie

w

8

§ All-Gather is often followed by a GEMM (e.g., attention or FFN), which requires 
reading data from both local and remote devices.

8AllGather + GEMM Example
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§ Each GPU pushes its local data to other GPUs via the multimem.st instruction
• Inline PTX for in-switch computing function
• Automatic Data Duplication/Reduction in the Switch

9AllGather works in PUSH mode
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11Execution Details

① Producer GPU: proactively 
push via multimem.st

③ Consumer GPU: TBs read local memory 
in GEMM Kernel
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All-Gather + GEMM: remote store à syn. à local read

② Global
Synchronization 
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12Execution Details

① Producer GPU: proactively 
push via multimem.st

③ Consumer GPU: TBs read local memory 
in GEMM Kernel
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13Execution Details

① Producer GPU: proactively 
push via multimem.st

③ Consumer GPU: TBs read local memory 
in GEMM Kernel
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§ The GEMM computation requires memory reads from both local and remote devices, 
yet multimem.st, the in-switch instruction used for All-Gather, operates in push mode.

14In summary: Producer PUSH, then Consumer READ
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③ Consumer GPU: TBs read local memory 
in GEMM Kernel

GPU3
Cores Mem

GPU2
Cores Mem

GPU1

Cores Mem
GPU0

Cores Mem

NVLink SHARP

All-Gather + GEMM: remote store à syn. à local read

② Global
Synchronization 

GPU3
Cores Mem

GPU2
Cores Mem

GPU1
Cores Mem

GPU0
Cores Mem

NVLS

multimem.st



Pre
vie

w

15

A0

A3

A1
A2

B0 C0

15From GEMM side: Rethinking All-Gather+GEMM
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16From GEMM side: Rethinking All-Gather+GEMM

GPU 0

SM SM

DRAM

SM SM

DRAM

GPU 1

3
1

__global__ AG_GEMM_MultimemSt(......) {
// Perform AllGather with multimem.st
AllGather_MultimemSt();
// Guarantee remote GPU has pushed data to local DRAM 
Global_Barrier();
// Load data to shared memory from local DRAM
Local_Load();
// Guarantee data has been in shared memory
Local_Barrier();
// Perform computation with data in shared memory
Computation();}

1

2

3

2

§ Issue 1: isolated data-transfer & compute in separate phases (GPU 0 vs. 1)

§ Issue 2: frequent global synchronization

§ Issue 3: more programming effort & software cost

à in-efficiency in fine-grained compute-communicate overlap
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§Benefit 1: disjoint data-move & compute unified in one single end
§Benefit 2: frequent less global synchronization
§Benefit 3: more less programming effort & software cost

à smoother data-flow & compute-communicate overlap

17What if AllGather in “Pull Mode”?

__global__ AG_GEMM_Load(......) {
// Directly read remote data to shared memory with load
Remote_Load();
// Load data to shared memory from local DRAM
Local_Load();
// Guarantee data has been in shared memory
Local_Barrier();
// Perform computation with data in shared memory
Computation();

}

GPU 0

SM SM

DRAM

SM SM

DRAM

GPU 1

1

1
2

2

NVLS-enabled NVSwitch
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19( TP | SP ) & (Forward | Backward)

Tensor Parallelism with Sequence Parallelism (TP with SP)

Basic Tensor Parallelism (Basic TP)

𝑓
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:backward
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20Semantic Mismatch between Comp. & Comm.

TP Operation
AG-GEMM Read Memory
GEMM-RS Write Memory
AR-GEMM Read Memory
GEMM-AR Write Memory

TP with SP

Basic TP

Required Memory Semantics

Tensor Parallelism Requirement

multimem.st

multimem.ld_reduce

multimem.red

Existing Primitives Collective Op

AllGather

Reduce-Scatter

AllReduce

Push

Pull

Push

Comm. Mode

Existing NVLink SHARP Primitives

“Read-Push”

“Write-Pull”

Mis-Matches

“Read-Push”
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21CAIS: Re-design NVLS in a Compute-aware Fashion

TP Operation
AG-GEMM Read Memory
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24Three Key Pieces in CAIS

ISA Design &
Micro-architectures

Architecture
Foundation

1

Cross-GPU
Coordination

Kernel-level
Optimization

2

Dataflow
Optimization

Graph-level
Optimization

3
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25Tech 1：ISA Extensions

Instruction 1: load ld.cais.global.f32

red.cais.global.add.f32

ld.global.f32

red.global.add.f32

Original Inst. in 
Existing Arch

Instruction 2: reduce 

The Proposed Inst.
in CAIS
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26Tech 1：ISA Extensions

§ Instruction 1: load 

§ Instruction 2: reduce

ld.cais.global.f32 d,[a];

Data 
type

Addr. RegData RegCAIS Flag State 
Space

red.cais.global.add.f32 [a],d;

Data 
Type

Addr. Reg Data RegCAIS Flag State 
Space

Reduce
Operation
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27Tech 1: Micro-architectures
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28Tech 1: In-Switch Micro-Functions
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29Tech 2: Cross-GPU TB Coordination

§AllGather-GEMM Example: 

C0C1C2C3× =

Mat A Mat CMat B

GPU0 GPU1 GPU2 GPU3

A0
DRAM

A1
DRAM

A2
DRAM

Switch

TB0SM
GPU0

TB1SM
GPU1
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GPU2

A0

A2
A3

A1 B0B1B2B3

AllGather-GEMM 
Example

In-switch Request 
Broadcasting

GPU0
GPU1
GPU2
GPU3 A3

DRAM

TB3SM
GPU3

“A1”data is requested by multiple GPUs (0/2/3) 
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30Tech 2: Cross-GPU TB Coordination

§Without coordination, mergeable load or reduction requests from different 
GPUs may arrive at the switch at different times, resulting in missed merging 
opportunities or buffer pressure due to delayed aggregation. 

tim
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Request

GPU 2SwitchGPU 0

TB
 2

Request Request

GPU 2SwitchGPU 0

TB
 2

Sync
(Pre-launch)

Waiting

Merge?
Merge!

Timeline without 
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Timeline with 
Coordination

TB
 0

TB
 0

Sync
(Pre-access)
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31Tech 2: Cross-GPU TB Coordination
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32Tech 3: Graph-level dataflow optimization

First Layer
of FFN

Output Projection Layer
of Attention

Mat A
GEMM-1

LN Mat B
GEMM-2

Sub-layer of Transformer layer and its fine-grained dependency
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33Tech 3: CAIS-enabled Kernel Fusion

time

SM0
SM1

GPU2Switch
Switch2GPU

Reduce-Scatter AllGather

Global Barrier

time

SM0
SM1

GPU2Switch
Switch2GPU

Start before completion of producer kernel

Timeline of communication-centric in-switch computing

Timeline of compute-aware in-switch computing + fine-grained dependency
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34Tech 3: Opportunities of Complementary Traffic

Reduction in GEMM-RS Load in AG-GEMM
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35Tech 3: Kernel Fusion for Complementary Traffic

SM0
SM1

GPU2Switch
Switch2GPU

time

time

SM0
SM1

GPU2Switch
Switch2GPU

Utilize complementary Communication pattern

Timeline of compute-aware in-switch computing + fine-grained dependency

Timeline of compute-aware in-switch computing + fine-grained
dependency + asymmetric kernel overlapping
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37Experimental Methodology

§Machine Setup：

• 8 GPUs + 4 NVSwitches, similar to NVDIA DGX-H100

• Modified Accel-Sim + BookSim2

§Workload：

• Mega-GPT-4B，Mega-GPT-8B，LLaMA-7B

• Training and Inference

§ Previous work:

Baseline MICRO’20 ASPLOS’22 SC’24 ASPLOS’24

Original - LADM CoCoNet FuseLib T3

+NVLS TP/SP+NVLS - CoCoNet+NVLS FuseLib+NVLS T3+NVLS
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38Result 1: Model Speedup (Training/Inference) 

§ Inference: 1.21×~ 1.99×

§ Training: 1.25×~2.03×

End-to-End

Layer
wise
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39Result 2：Benefits of TB Coordination

§Higher Performance: 
• The waiting time was reduced 

from 35 to 3 microseconds for 

merge requests. 

§ Lower Hardware Cost: 
• This further decreases the 

required capacity of the lookup 

table, leading to higher 

performance with fewer in-switch 

caches.
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40Result 3: Bandwidth Utilization Improvements

CAIS base: 62.4%
Only ISA & Arch

CAIS Partial: 84.7%
ISA & Arch + Graph

CAIS Full: 90.2%
ISA & Arch + Graph + Trfc Ctl
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41Result 4：Scalability and HW Cost

§ Scalability：

• The performance with 32 GPUs is less than 

5% lower than with 8 GPUs.

• The hardware overhead does not increase 

with the number of GPUs

§HW Cost：
• Switch: 0.5 mm2, < 1% of NVswitch. 

• GPU: 0.019 mm2, <0.01% of H100.

• 12 nm process



Pre
vie

w1. Background
2. Motivation
3. Solutions
4. Experiments
5. Conclusion



Pre
vie

w

43

43Takeaways & Open questions

§The existing NVSwitch is designed with a communication-centric approach, 
lacking consideration for up/down-stream operators (e.g., GEMM), 
limiting the performance of in-switch computing in Scale-up GPU System.

§This work provides a detailed analysis of the TP dataflow during both LLM 
training and inference, and subsequently redesigns a Compute-aware In-
switch Computing communication mechanism.

§Building upon this mechanism, we propose corresponding designs at the 
instruction set, architecture, and software stacks. These designs 
substantially enhance the collective performance of multi-GPU systems, 
thereby demonstrating the advantages of the proposed scheme.
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